【題目】如圖,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,則∠E與∠F之間滿(mǎn)足的數(shù)量關(guān)系是(

A.∠E=∠F
B.∠E+∠F=180°
C.3∠E+∠F=360°
D.2∠E﹣∠F=90°

【答案】C
【解析】解:過(guò)點(diǎn)E作EN∥DC,
∵AB∥CD,
∴AB∥EN∥DC,
∴∠ABE=∠BEN,∠CDE=∠NED,
∴∠ABE+∠CDE=∠BED,
∵∠EBF=2∠ABE,∠EDF=2∠CDE,
∴設(shè)∠ABE=x,則∠EBF=2x,設(shè)∠CDE=y,則∠EDF=2y,
∵2x+2y+∠BED+∠F=360°,
∴2∠BED+∠BED+∠F=360°,
∴3∠BED+∠F=360°.
故選:C.

【考點(diǎn)精析】本題主要考查了平行線(xiàn)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握兩直線(xiàn)平行,同位角相等;兩直線(xiàn)平行,內(nèi)錯(cuò)角相等;兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知蝸牛從A點(diǎn)出發(fā),在一條數(shù)軸上來(lái)回爬行,規(guī)定:向正半軸運(yùn)動(dòng)記作“+”,向負(fù)半軸運(yùn)動(dòng)記作“﹣”,從開(kāi)始到結(jié)束爬行的各段路程(單位:cm)依次為:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4
(1)若A點(diǎn)在數(shù)軸上表示的數(shù)為﹣3,則蝸牛停在數(shù)軸上何處,請(qǐng)通過(guò)計(jì)算加以說(shuō)明;
(2)若蝸牛的爬行速度為每秒 cm,請(qǐng)問(wèn)蝸牛一共爬行了多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某碼頭上有20名工人裝載一批貨物,已知每人往一艘輪船上裝載2噸貨物,裝載完畢恰好用了6天,輪船到達(dá)目的地后,另一批工人開(kāi)始卸貨,計(jì)劃平均每天卸貨v噸,剛要卸貨時(shí)遇到緊急情況,要求船上的貨物卸載完畢不超過(guò)4天,則這批工人實(shí)際每天至少應(yīng)卸貨( 。

A. 30 B. 40 C. 50 D. 60

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線(xiàn)OM、ON上移動(dòng),BE是∠ABN的平分線(xiàn),BE的反向延長(zhǎng)線(xiàn)與∠OAB平分線(xiàn)相交于點(diǎn)C,試問(wèn):∠ACB的大小是否發(fā)生變化?如果保持不變,請(qǐng)給出證明;如果隨點(diǎn)A、B移動(dòng)發(fā)生變化,請(qǐng)求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)數(shù)的平方和它的倒數(shù)相等,則這個(gè)數(shù)是(
A.1
B.﹣1
C.±1
D.±1和0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD邊長(zhǎng)為3,連接ACAE平分CAD,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,FAAE,交CB延長(zhǎng)線(xiàn)于點(diǎn)F,則EF的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)O,OA平分∠EOC.

(1)若∠EOC=72°,求∠BOD的度數(shù);
(2)若∠DOE=2∠AOC,判斷射線(xiàn)OE,OD的位置關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果5x+3與﹣2x+9是互為相反數(shù),則x的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)的圖像在每一個(gè)象限內(nèi), 值隨值的增大而增大的是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案