【題目】截至去年底,國家開發(fā)銀行對“一帶一路”沿線國家累計貸款超過1600億美元,其中1600億用科學記數(shù)法表示為(  )

A. 16×1010 B. 1.6×1010 C. 1.6×1011 D. 0.16×1012

【答案】C

【解析】解:1600億用科學記數(shù)法表示為1.6×1011故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】據(jù)有關測定,當氣溫處于人體正常體溫(37℃)的黃金比值時,人體感到最舒適,則這個氣溫約為_________℃(結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表為抄錄北京奧運會官方票務網(wǎng)公布的三種球類比賽的部分門票價格,某公司購買的門票種類、數(shù)量繪制的條形統(tǒng)計圖如圖.

比賽項目

票價(元/張)

1000

800

乒乓球

x

依據(jù)上列圖、表,回答下列問題:

(1)其中觀看男籃比賽的門票有 張;觀看乒乓球比賽的門票占全部門票的 %;

(2)公司決定采用隨機抽取的方式把門票分配給100名員工,在看不到門票的條件下,每人抽取一張(假設所有的門票形狀、大小、質(zhì)地等完全相同且充分洗勻),問員工小亮抽到足球門票的概率是 ;

(3)若購買乒乓球門票的總款數(shù)占全部門票總款數(shù)的,試求每張乒乓球門票的價格.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖、、中,點E、D分別是正△ABC、正四邊形ABCM、正五邊形ABCMN中以C點為頂點的相鄰兩邊上的點,且BE=CD,DBAEP點.

1)分別求圖,圖和圖中,∠APD的度數(shù).

2)根據(jù)前面探索,你能否將本題推廣到一般的正n邊形情況?若能,寫出推廣問題和結論;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】地球到太陽的距離約為1.5×108km,光的速度約為3.0×105km/s,則太陽光從太陽射到地球的時間約為____s.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】倡導研究性學習方式,著力教材研究,習題研究,是學生跳出題海,提高學習能力和創(chuàng)新能力的有效途徑.下面是一案例,請同學們認真閱讀、研究,完成“類比猜想”及后面的問題.

習題解答

習題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,說明理由.

解:

∵正方形ABCD中,AB=AD,∠BAD=∠ADC=90°

∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADE′,點F、D、E′在一條直線上.

∴∠E′AF=90°-45°=45°=∠EAF.

又∵AE′=AE,AF=AF

∴△AE′FF≌△AEF(SAS)

∴EF=E′F=DE′+DF=BE+DF.

習題研究.

觀察分析:

觀察圖1,由解答可知,該題有用的條件是①.ABCD是四邊形,點E、F分別在邊BC、CD上;②.AB=AD;③.∠B=∠D=90°∠;④.∠EAF=∠BAD.

類比猜想:

在四邊形ABCD中,點E、F分別在BC、CD上,當AB=AD,∠B=∠D時,還有EF=BE+DF嗎?

要解決上述問題,可從特例入手,請同學們思考:如圖2,在菱形ABCD中,點E、F分別在BC、CD上,當∠BAD=120°,∠EAF=60°時,還有EF=BE+DF嗎?試證明.

(2)在四邊形ABCD中,點E、F分別在邊BC、CD上,當AB=AD,∠B+∠D=180°,∠EAF=∠BAD時,還有EF=BE+DF嗎?使用圖3證明.

歸納概括:

反思前面的解答,思考每個條件的作用,可以得到一個結論“EF=BE+DF”的一般命題:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄰補角是(

A. 和為180°的兩個角

B. 有公共頂點且互補的兩個角

C. 有一條公共邊相等的兩個角

D. 有公共頂點且有一條公共邊,另一邊互為反向延長線的兩個角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將下列多項式分解因式,結果中不含因式x﹣1的是( 。

A. x2﹣1 B. x(x﹣2)+(2﹣x) C. x2﹣2x+1 D. x2+2x+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】點到直線的距離是指這點到這條直線的

A、垂線段B、垂線的長

C、長度D、垂線段的長度

查看答案和解析>>

同步練習冊答案