【題目】某校門前正對一條公路,車流量較大,為便于學生安全通過,特建一座人行天橋.如圖,是這座天橋的引橋部分示意圖,上橋通道由兩段互相平行的樓梯AB、CD和一段平行于地面的平臺CB構(gòu)成.已知∠A=37°,天橋高度DH為5.1米,引橋水平跨度AH為8.3米.
(1)求水平平臺BC的長度;
(2)若兩段樓梯AB:CD=10:7,求樓梯AB的水平寬度AE的長.
(參考數(shù)據(jù):sin37°≈ ,cos37°≈ ,tan37°≈ )
【答案】
(1)
解:延長DC交AH于F,
根據(jù)題意得,四邊形BCFA為平行四邊形,
故BC=AF,BA=CF,
∵BA∥CF,
∴∠HFC=∠A=37°,
在RT△DHF中,DH=5.1,
∴HF= ═6.8(m),
∴BC=AH﹣HF=1.5(m)
(2)
解:如圖
作CG⊥AH于G,得CG=BE,
∵CG∥DH,
∴△FCG∽△FDH,
∴ ,
∵AB:CD=10:7,
∴ ,
∴CG=3,
∴AE= =4米
【解析】(1)延長DC交AH于F,根據(jù)題意得,四邊形BCFA為平行四邊形,在RT△DHF中,求出HF,則可得出BC的長度.(2)先判斷出△FCG∽△FDH,然后根據(jù)AB:CD=10:7,可得出 = ,繼而可解出CG的長度,也可得出AE的長.
【考點精析】掌握關(guān)于坡度坡角問題是解答本題的根本,需要知道坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB'C'D'的位置,旋轉(zhuǎn)角為(0°<<90°).若∠1=112°,則∠的大小是( )
A. 22° B. 20° C. 28° D. 68°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點O,O是AC的中點,AD//BC,AC=8,BD=6.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC⊥BD,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為更好宣傳“開車不喝酒,喝酒不開車”的駕車理念,某市一家報社設計了如圖1的調(diào)查問卷(單選),在隨機調(diào)查了本市10000名司機中的部分司機后,統(tǒng)計整理并制作了如圖2所示的統(tǒng)計圖:
根據(jù)以上的信息解答下列問題:
(1)補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中a= .
(2)該市支持選項C的司機大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,根據(jù)2013﹣2017年某市財政總收入(單位:億元)統(tǒng)計圖所提供的信息,下列判斷正確的是( )
A. 2013~2017年財政總收入呈逐年增長
B. 預計2018年的財政總收入約為253.43億元
C. 2014~2015年與2016~2017年的財政總收入下降率相同
D. 2013~2014年的財政總收入增長率約為6.3%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,根據(jù)2013﹣2017年某市財政總收入(單位:億元)統(tǒng)計圖所提供的信息,下列判斷正確的是( )
A. 2013~2017年財政總收入呈逐年增長
B. 預計2018年的財政總收入約為253.43億元
C. 2014~2015年與2016~2017年的財政總收入下降率相同
D. 2013~2014年的財政總收入增長率約為6.3%
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線y=x2+bx+c過點A(3,0),B(1,0),交y軸于點C,點P是該拋物線上一動點,點P從C點沿拋物線向A點運動(點P不與點A重合),過點P作PD∥y軸交直線AC于點D.
(1)求拋物線的解析式;
(2)求點P在運動的過程中線段PD長度的最大值;
(3)△APD能否構(gòu)成直角三角形?若能請直接寫出點P坐標,若不能請說明理由;
(4)在拋物線對稱軸上是否存在點M使|MA﹣MC|最大?若存在請求出點M的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,“旱災無情人有情”.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來;
(3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com