15.如圖所示是從長(zhǎng)為70cm,寬為40cm的矩形鋼板的左上角截取一塊長(zhǎng)為30cm,寬為10cm的矩形后,剩下的一塊下腳料.工人師傅要將它做適當(dāng)?shù)那懈,重新拼接后焊成一個(gè)面積與原下腳料的面積相等的正方形工件,請(qǐng)根據(jù)上述要求,設(shè)計(jì)出將這塊下腳料適當(dāng)分割成三塊或三塊以上的兩種不同的拼接方案(在圖②、③中分別畫(huà)出切割時(shí)所需的虛線,以及拼接后所得到的正方形,保留拼接的痕跡).

分析 根據(jù)已知條件得到這個(gè)圖形的面積=900+1600=2500,故拼接后所得到的正方形的邊長(zhǎng)為50,不能得到拼接方案.

解答 解:∵下腳料面積=900+1600=2500,
∴拼接后所得到的正方形的邊長(zhǎng)為50.
故拼接的方案如圖.

點(diǎn)評(píng) 本題考查正方形的判定和性質(zhì)、勾股定理等知識(shí),近年中考中涌現(xiàn)的設(shè)計(jì)新穎、富有創(chuàng)意的折疊、剪拼與分割等問(wèn)題,注重對(duì)學(xué)生動(dòng)手實(shí)踐操作、應(yīng)用意識(shí)、學(xué)習(xí)潛能的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某校積極開(kāi)展“陽(yáng)光體育”活動(dòng),共開(kāi)設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動(dòng)項(xiàng)目,為了解學(xué)生最喜愛(ài)哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如圖的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次調(diào)查學(xué)生的人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)計(jì)算扇形統(tǒng)計(jì)圖中籃球項(xiàng)目對(duì)應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.若對(duì)于任何實(shí)數(shù)x,分式$\frac{1}{{x}^{2}+4x+c}$總有意義,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在平面直角坐標(biāo)系中,直線y=$\frac{4}{3}$x+8與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,拋物線y=ax2+bx+c經(jīng)過(guò)A、B兩點(diǎn),并交x正半軸于點(diǎn)C,且AB=AC.
(1)求拋物線的解析式;
(2)∠BAC的角平分線交y軸于點(diǎn)D,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AD運(yùn)動(dòng),過(guò)點(diǎn)P作x軸的垂線交拋物線于點(diǎn)Q:設(shè)點(diǎn)P的橫坐標(biāo)為m,線段PQ的長(zhǎng)度為d,求d與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線PQ交x軸于點(diǎn)G,在x軸上方的拋物線上,是否存在點(diǎn)R,使以A、D、G、R為頂點(diǎn)的四邊形是平行四邊形?若存在請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上的一動(dòng)點(diǎn),連結(jié)OB、AB,并延長(zhǎng)AB至點(diǎn)D,使DB=AB,過(guò)點(diǎn)D作x軸垂線,分別交x軸.直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF.
(1)當(dāng)∠AOB=30°時(shí),求弧AB的長(zhǎng);
(2)當(dāng)DE=8時(shí),求過(guò)點(diǎn)O、A、F的拋物線的解析式;
(3)在點(diǎn)B運(yùn)動(dòng)過(guò)程中,點(diǎn)E在線段OA上時(shí),是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系中,二次函數(shù)定點(diǎn)坐標(biāo)為c(4,-$\sqrt{3}$),且在x軸上截得的線段AB為6.
(1)求A,B坐標(biāo);
(2)點(diǎn)p在y上,且使得△PAC周長(zhǎng)最小,求P點(diǎn)坐標(biāo);
(3)在x軸上方的拋物線上是否存在點(diǎn)Q,使得以Q,A,B三點(diǎn)為頂點(diǎn)的三角形與三角形ABC相似?若存在請(qǐng)求出Q點(diǎn)坐標(biāo);不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,-3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△BPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△BPC的最大面積;
(3)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP1C,那么是否存在點(diǎn)P,使四邊形POP1C為菱形?若存在,直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.先化簡(jiǎn),再求值:
(1)(m+2-$\frac{5}{m-2}$)$•\frac{2m-4}{3-m}$,其中m=$\frac{3}{4}$.
(2)($\frac{{x}^{2}+4}{x}$-4)$÷\frac{{x}^{2}-4}{{x}^{2}+2x}$,其中x=-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.先化簡(jiǎn),再求值:3xy2-(-4x2y+6xy2)+2(xy2-4x2y),其中|x+2|+2(y-$\frac{1}{2}$)4=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案