【題目】如圖,已知拋物線交x軸于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)若點(diǎn)M為拋物線的頂點(diǎn),連接BC、CM、BM,求△BCM的面積;
(3)連接AC,在x軸上是否存在點(diǎn)P使△ACP為等腰三角形,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】(1)A(-1,0)、B(5,0)、C(0,2);(2)6;(3)存在、、三點(diǎn),它們的坐標(biāo)分別是(-1-,0),(-1,0),(,0),.
【解析】
(1)令y=0求A、B兩點(diǎn)橫坐標(biāo),令x=0求C點(diǎn)縱坐標(biāo);
(2)由拋物線頂點(diǎn)坐標(biāo)公式求M點(diǎn)坐標(biāo),過M作MN垂直y軸于N,根據(jù)S△BCM=SOBMN-S△OBC-S△MNC求△BCM的面積;
(3)根據(jù)AC為腰,AC為底兩種情況求P點(diǎn)坐標(biāo).當(dāng)AC為腰時(shí),分為A為等腰三角形的頂點(diǎn),C為等腰三角形的頂點(diǎn),兩種情況求P點(diǎn)坐標(biāo);當(dāng)AC為底時(shí),作線段AC的垂直平分線交x軸于P點(diǎn),利用三角形相似求OP.
解:(1)令x2+x+2=0,
解得:=-1,=5,
令x=0,則y=2,
∴A、B、C的坐標(biāo)分別是:A(-1,0)、B(5,0)、C(0,2);
(2)∵
∴頂點(diǎn)M的坐標(biāo)是M(2,),
過M作MN垂直y軸于N,
∴△BCM的面積=--
=(2+5)×-×5×2-×(-2)×2=6;
(3)存在
當(dāng)以AC為腰時(shí),在x軸上有兩個(gè)點(diǎn)分別為,,
∵
則=1+,=-1,
∴,的坐標(biāo)分別是:(-1-,0),(-1,0);
當(dāng)以AC為底時(shí),作AC的垂直平分線交x軸于,交y軸于F,垂足為E,
∴CE=,
易證△CEF∽△COA,
∴,
∴,
∴CF=,
∴OF=OC-CF=2-=,
∴EF=
又△CEF∽△OF,
∴,
∴,
則的坐標(biāo)為(,0);
當(dāng)以AC為腰時(shí),點(diǎn)C為頂點(diǎn)時(shí),有AC=PC,
則點(diǎn)P4為(1,0);
∴存在、、三點(diǎn),它們的坐標(biāo)分別是:
(-1-,0),(-1,0),(,0),;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李輝到服裝專賣店去做社會(huì)調(diào)查,了解到商店為了激勵(lì)營業(yè)員的工作積極性實(shí)行了“月總收入=基本工資+計(jì)件獎(jiǎng)金”的方法,并獲得了如下信息:
營業(yè)員 | 嘉琪 | 嘉善 |
月銷售件數(shù)/件 | 400 | 300 |
月總收入/元 | 7800 | 6600 |
假設(shè)月銷售件數(shù)為x件,月總收入為y元,銷售每件獎(jiǎng)勵(lì)a元,營業(yè)員月基本工資為b元.
(1)求a、b的值.
(2)若營業(yè)員嘉善某月總收入不低于4200元,那么嘉善當(dāng)月至少要賣多少件衣服?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張大小、質(zhì)地均相同的卡片上各寫一個(gè)數(shù)字,分別為5,6,8,8,現(xiàn)將四張卡片放入一只不透明的盒子中.
(1)求這四個(gè)數(shù)字的眾數(shù);
(2)若甲抽走一張寫有數(shù)字“6”的卡片.
①剩下三張卡片的三個(gè)數(shù)字的中位數(shù)與原來四張卡片的四個(gè)數(shù)字的中位數(shù)是否相同?并說明理由;
②攪勻后乙準(zhǔn)備從剩余的三張卡片中隨機(jī)抽取一張卡片,記下數(shù)字后放回,攪勻后再任意抽取一張,記下數(shù)字.求兩次摸到不同數(shù)字卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小正方格都是邊長為1的正方形,我們把以格點(diǎn)間連接為邊的三角形稱為“格點(diǎn)三角形”,圖中的就是格點(diǎn)三角形,在建立平面直角坐標(biāo)系后,O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)
(1)以O點(diǎn)為位似中心在軸的左側(cè)將△OBC放大兩倍(即新圖與原圖的相似比為2),在該坐標(biāo)系中畫出圖形;
(2)分別寫出B、C兩點(diǎn)的對應(yīng)點(diǎn)B′、C′的坐標(biāo);
(3)如果△OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對應(yīng)點(diǎn)M′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市家庭月均用電量情況,有關(guān)部門隨機(jī)抽查了我市1000戶家庭的月均用電量,并將調(diào)查數(shù)據(jù)整理如下:
(1)頻數(shù)分布表中的m= ,n= ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)被調(diào)查的1000戶家庭月均用電量的眾數(shù)落在哪一個(gè)范圍?
(4)求月均用電量小于150度的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點(diǎn)的直線和與反比例函數(shù)的圖象分別交于兩點(diǎn)和,連結(jié).
(1)四邊形一定是什么四邊形;(直接寫結(jié)果)
(2)四邊形可能是矩形嗎?若可能,求此時(shí)和之間的關(guān)系式;若不可能,說明理由;
(3)設(shè)是函數(shù)圖象上的任意兩點(diǎn),,請判斷的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對應(yīng)的圓心角的度數(shù).
(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為加快5G網(wǎng)絡(luò)建設(shè),某通信公司在一個(gè)坡度i=1:2.4的山坡AB上建了一座信號(hào)塔CD,信號(hào)塔底端C到山腳A的距離AC=13米,在距山腳A水平距離18米的E處,有一高度為10米的建筑物EF,在建筑物頂端F處測得信號(hào)塔頂端D的仰角為37°(信號(hào)塔及山坡的剖面和建筑物的剖面在同一平面上),則信號(hào)塔CD的高度約是( 。▍⒖紨(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.22.5米B.27.5米C.32.5米D.45.0米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個(gè)單位長度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和點(diǎn)A1.
(1)畫出一個(gè)格點(diǎn)△A1B1C1,并使它與△ABC全等且A與A1是對應(yīng)點(diǎn);
(2)畫出點(diǎn)B關(guān)于直線AC的對稱點(diǎn)D,并指出AD可以看作由AB繞A點(diǎn)經(jīng)過怎樣的旋轉(zhuǎn)而得到的.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com