【題目】有這樣一個問題,如圖1,在等邊中,,為的中點,,分別是邊,上的動點,且,若,試求的長.愛鉆研的小峰同學發(fā)現(xiàn),可以通過幾何與函數(shù)相結(jié)合的方法來解決這個問題,下面是他的探究思路,請幫他補充完整.
(1)注意到為等邊三角形,且,可得,于是可證,進而可得,注意到為中點,,因此和滿足的等量關系為______.
(2)設,,則的取值范圍是______.結(jié)合(1)中的關系求與的函數(shù)關系.
(3)在平面直角坐標系中,根據(jù)已有的經(jīng)驗畫出與的函數(shù)圖象,請在圖2中完成畫圖.
(4)回到原問題,要使,即為,利用(3)中的圖象,通過測量,可以得到原問題的近似解為______(精確到0.1)
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中四邊形OABC是邊長為6的正方形,平行于對角線AC的直線l從O出發(fā),沿x軸正方向以每秒一個單位長度的速度運動,運動到直線l與正方形沒有交點為止,設直線l掃過正方形OABC的面積為S,直線l的運動時間為t(秒),下列能反映S與t之間的函數(shù)圖象的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形的頂點在軸正半軸上,平行于軸,直線交軸于點,,連接,反比例函數(shù)的圖象經(jīng)過點.已知,則的值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑.∠ACB的平分線CD交⊙O于點D,過點D作⊙O的切線PD交CA的延長線于點P,過點A作AE⊥CD于點E,過點B作BF⊥CD于點F.
(1)求證:DP∥AB;
(2)試猜想線段AE、EF、BF之間的數(shù)量關系,并加以證明;
(3)若AC=6,BC=8,求線段PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉(zhuǎn)一定的角度得到△AED,點B、C的對應點分別是E、D.
(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習了統(tǒng)計知識后,小明的數(shù)學老師要求每個學生就本班同學的上學方式進行一次調(diào)查統(tǒng)計,如圖是小明通過收集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖. 請根據(jù)圖中提供的信息,解答下列問題:
(1)該班共有_______________名學生;
(2)將“騎自行車”部分的條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中;求出“乘車”部分所對應的圓心角的度數(shù);
(4)若全年級有600名學生,試估計該年級騎自行車上學的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍;
(2)是否存在實數(shù)k使得成立?若存在,請求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.
(1)求證:AD平分∠BAC;
(2)若DF∥AB,則BD與CD有怎樣的數(shù)量關系?并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com