用配方法求x2+2x+2的最小值.

答案:
解析:

解:因為x2+2x+2=(x+1)2+1≥1,所以x2+2x+2的最小值為1.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

下列各題中解題方法或說法正確的個數(shù)有( 。
(1)用換元法解方程
x
x-1
+
2x-2
x
+3=0,設
x
x-1
=y,則原方程可化為y+
2
y
+3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2;
(3)若x2-4x+4+
y-6
=0,求x、y的值.用非負數(shù)的和為零解,則原式可以化為(x-2)2+
y-6

=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃陂區(qū)模擬)用配方法求y=x2-2x-3的頂點坐標,變形正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

用配方法求y=x2-2x-3的頂點坐標,變形正確的是


  1. A.
    y=(x+1)2+2
  2. B.
    y=(x+1)2-2
  3. C.
    y=(x+1)2-4
  4. D.
    y=(x-1)2-4

查看答案和解析>>

科目:初中數(shù)學 來源:十堰 題型:單選題

下列各題中解題方法或說法正確的個數(shù)有( 。
(1)用換元法解方程
x
x-1
+
2x-2
x
+3=0,設
x
x-1
=y,則原方程可化為y+
2
y
+3=0;
(2)若x+y=a,x-y=b,求2x2+2y2的值.用配方法求,2x2+2y2=(x+y)2+(x-y)2
(3)若x2-4x+4+
y-6
=0,求x、y的值.用非負數(shù)的和為零解,則原式可以化為(x-2)2+
y-6

=0;
(4)四個全等的任意四邊形的地磚,鋪成一片可以不留空隙.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案