【題目】把下列各數(shù)填在相應(yīng)大括號里:,、-(-10) 、 -(-2)2,0.1010010001…
(1)正數(shù)集合{ …}
(2)整數(shù)集合{ …}
(3)正分數(shù)集合{ …}
(4)非負整數(shù)集合{ …}
【答案】見解析
【解析】
(1)根據(jù)正數(shù)的定義即可求解;
(2)根據(jù)整數(shù)的定義即可求解;
(3)根據(jù)正分數(shù)的定義即可求解;
(4)根據(jù)非負整數(shù)的定義即可求解.
-(-96)=96,=-3,=2.5,-(-10)=10,-(-2)2=-4,
(1)正數(shù)集合{12,-(-96),,,,-(-10),0.1010010001…}
(2)整數(shù)集合{12,-(-96),,0,-(-10),-(-2)2…}
(3)正分數(shù)集合{,,…}
(4)非負整數(shù)集合{12,-(-96),0,-(-10)…}
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛出租車司機某天在東西方向的公路上營運,往東行駛的路程記作正數(shù),往西行駛的路程記作負數(shù).全天行程的記錄如下:30,-28,-13,15,27,-30,45,-27;(單位:千米)
(1)當(dāng)小張將最后一位乘客送到目的地時,距出發(fā)地點的距離為多少千米?
(2)若每千米的營業(yè)額為7元,則小張這天的總營業(yè)額為多少元?
(3)在(2)的情況下,如果營運成本為每千米2元,那么這天盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,點M是斜邊AB的中點,MD∥BC,且MD=CM,DE⊥AB于點E,連結(jié)AD、CD.
(1)求證:△MED∽△BCA;
(2)求證:△AMD≌△CMD;
(3)設(shè)△MDE的面積為S1,四邊形BCMD的面積為S2,當(dāng)S2=S1時,求cos∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知△ABC≌△DBE,點D在AC上,BC與DE交于點P,若AD=DC=2.4,BC=4.1.
(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度數(shù);
(2)求△DCP與△BPE的周長和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在數(shù)學(xué)活動課中,小明剪了一張△ABC的紙片,其中∠A=60°,他將△ABC折疊壓平使點A落在點B處,折痕DE,D在AB上,E在AC上.
(1)請作出折痕DE;(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)判斷△ABE的形狀并說明;
(3)若AE=5,△BCE的周長為12,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OA⊥OC,點D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的長;
(3)P是半徑OC上一動點,連結(jié)AP、PD,請求出AP+PD的最小值,并說明理由.
(解答上面各題時,請按題意,自行補足圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點A逆時針旋轉(zhuǎn)60°,點O,B的對應(yīng)點分別為O′,B′,連接BB′,則圖中陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經(jīng)過點E,且交BC于點F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,AB=AC,點E是BD上一點,且AE=AD,∠EAD=∠BAC.
⑴ 求證:∠ABD=∠ACD;
⑵ 若∠ACB=65°,求∠BDC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com