【題目】如圖,Rt△ABC紙片中,∠C=90°,AC=3,BC=4,點(diǎn)D在邊BC上,以AD為折痕將△ABD折疊得到△AB’D,AB'與邊BC交于點(diǎn)E.若△DEB’為直角三角形,則BD的長(zhǎng)是________.
【答案】1或
【解析】
由勾股定理可求出AB,若△DEB′為直角三角形,則有(1)∠EDB′=90°,(2)∠DEB′=90°兩種情況,因此分別畫(huà)出圖形,在第(1)種情況中,由折疊和三角形的內(nèi)角和可證△ACE∽△BCA,求出CE、AE的長(zhǎng),進(jìn)而求出DE、EB′,在Rt△DEB′中,設(shè)未知數(shù),列方程求解即可,在第(2)種情況中,點(diǎn)E與點(diǎn)C重合,求出EB′,在Rt△DEB′中,由勾股定理列方程求解即可.
解:在Rt△ACB中,
∵ ∠C=90°,AC=3,BC=4,
∴AB=5,
又∵ 以AD為折痕將△ABD折疊得到△ABD,
∴BD=BD,AB=AB=5,
∵△DEB為直角三角形,
∴①如圖1所示:當(dāng)∠BDE=90°時(shí),過(guò)B作BF⊥AC交AC延長(zhǎng)線于F,
設(shè)BD=BD=x,
∴AF=AC+CF=3+x,BF=CD=CB-BD=4-x,
在Rt△AFB中,
∴AF2+BF2=AB2 ,
即(3+x)2+(4-x)2=52 ,
解得:x=1或x=0(舍去),
∴BD=BD=1,
②如圖2所示:當(dāng)∠BED=90°時(shí),此時(shí)點(diǎn)C與點(diǎn)E重合,
∵AB=5,AC=3,
∴BE=AB-AC=5-3=2,
設(shè)BD=BD=y,
∴CD=BC-BD=4-y,
在Rt△BDE中,
∴BE2+DE2=DB2 ,
即(4-y)2+22=y2 ,
解得:y= ,
∴BD=BD= ,
綜上所述:BD的長(zhǎng)為1或.
故答案為:1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD和正方形EFGH的中心重合,,,分別延長(zhǎng)FE,GF,HG和EH交AB,BC,CD,AD于點(diǎn)I,J,K,若,則AI的長(zhǎng)為______,四邊形AIEL的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2﹣x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將半徑為2,圓心角為120°的扇形OAB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)O,B的對(duì)應(yīng)點(diǎn)分別為O′,B′,連接BB′,則圖中陰影部分的面積是( )
A. B. 2- C. 2- D. 4-
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=2,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如圖1,在中,把AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到,把AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到,連接當(dāng)時(shí),我們稱是的“旋補(bǔ)三角形”, 邊上的中線AD叫做的“旋補(bǔ)中線”,點(diǎn)A叫做“旋補(bǔ)中心”.
特例感知:
在圖2,圖3中,是的“旋補(bǔ)三角形”,AD是的“旋補(bǔ)中線”.
如圖2,當(dāng)為等邊三角形時(shí),AD與BC的數(shù)量關(guān)系為______BC;
如圖3,當(dāng),時(shí),則AD長(zhǎng)為______.
猜想論證:
在圖1中,當(dāng)為任意三角形時(shí),猜想AD與BC的數(shù)量關(guān)系,并給予證明.
拓展應(yīng)用
如圖4,在四邊形ABCD,,,,,在四邊形內(nèi)部是否存在點(diǎn)P,使是的“旋補(bǔ)三角形”?若存在,給予證明,并求的“旋補(bǔ)中線”長(zhǎng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是反比例函數(shù)y=的圖象的一個(gè)分支,對(duì)于給出的下列說(shuō)法:
①常數(shù)k的取值范圍k>2;②另一分支在第三象限;③在函數(shù)圖象上取點(diǎn)A(a1,b1)和點(diǎn)B(a2,b2),當(dāng)a1>a2時(shí),則b1<b2;④在函數(shù)圖象的某一分支上取點(diǎn)A(a1,b1)和點(diǎn)B(a2,b2),當(dāng)a1>a2時(shí),則b1<b2.其中正確的是__________.(在橫線上填上正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是矩形ABCD的邊AD上一點(diǎn),且BE=ED,P是對(duì)角線BD上任一點(diǎn),PF⊥BE,PG⊥AD,垂足分別為F,G,求證:PF+PG=AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com