【題目】已知函數(shù)y=ax2﹣2ax﹣1(a是常數(shù),a≠0),下列結論正確的是( )
A.當a=1時,函數(shù)圖象過點(﹣1,1)
B.當a=﹣2時,函數(shù)圖象與x軸沒有交點
C.若a>0,則當x≥1時,y隨x的增大而減小
D.若a<0,則當x≤1時,y隨x的增大而增大
【答案】D
【解析】解:A、∵當a=1,x=﹣1時,y=1+2﹣1=2,
∴函數(shù)圖象不經過點(﹣1,1),故錯誤;
B、當a=﹣2時,
∵△=42﹣4×(﹣2)×(﹣1)=8>0,
∴函數(shù)圖象與x軸有兩個交點,故錯誤;
C、∵拋物線的對稱軸為直線x=﹣ =1,
∴若a>0,則當x≥1時,y隨x的增大而增大,故錯誤;
D、∵拋物線的對稱軸為直線x=﹣ =1,
∴若a<0,則當x≤1時,y隨x的增大而增大,故正確;
故選D.
把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函數(shù)圖象不經過點(﹣1,1),根據(jù)△=8>0,得到函數(shù)圖象與x軸有兩個交點,根據(jù)拋物線的對稱軸為直線x=﹣ =1判斷二次函數(shù)的增減性.本題考查的是二次函數(shù)的性質,熟練掌握二次函數(shù)的性質是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】我市盤山、黃崖關長城、航母公園三景區(qū)是人們節(jié)假日游玩的熱點景區(qū).某中學對七年級(1)班學生今年暑假到這三景區(qū)游玩的計劃做了全面調查,調查分四個類別,A游三個景區(qū);B:游兩個景區(qū);C:游一個景區(qū);D:不到這三個景區(qū)游玩.根據(jù)調查的結果繪制了不完全的條形統(tǒng)計圖和扇形統(tǒng)計圖(如圖①、圖②)如下,請根據(jù)圖中所給的信息,解答下列問題:
(1)求七年級(1)班學生人數(shù);
(2)將條形統(tǒng)計圖補充完整;
(3)求扇形統(tǒng)計圖中表示“B類別”的圓心角的度數(shù);
(4)若該中學七年級有學生520人,求計劃暑假選擇A、B、C三個類別出去游玩的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀后回答問題:
計算(-)÷(-15)×(-)
解:原式=-÷[(-15)×(-)] ①
=-÷1 ②
=- ③
()上述的解法是否正確?答:_________________________
若有錯誤,在哪一步?答:_________________________(填代號)
錯誤的原因是:___________________________________
(2)這個計算題的正確答案應該是:______________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1所示矩形ABCD中,BC=x,CD=y,y與x滿足的反比例函數(shù)關系如圖2所示,等腰直角三角形AEF的斜邊EF過C點,M為EF的中點,則下列結論正確的是
A. 當x=3時,EC<EM B. 當y=9時,EC>EM
C. 當x增大時,EC·CF的值增大。 D. 當y增大時,BE·DF的值不變。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加強中小學生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識競賽,為獎勵在競賽中表現(xiàn)優(yōu)異的班級,學校準備從體育用品商場一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),購買1個足球和1個籃球共需159元;足球單價是籃球單價的2倍少9元.
(1)求足球和籃球的單價各是多少元?
(2)根據(jù)學校實際情況,需一次性購買足球和籃球共20個,但要求購買足球和籃球的總費用不超過1550元,學校最多可以購買多少個足球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(如圖平面直角坐標系內,已知點A的坐標是(-3,0).
(1)點B的坐標為_______,點C的坐標為_____,∠BAC=______;
(2)求△ABC的面積;
(3)點P是y軸負半軸上的一個動點,連接BP交軸于點D,是否存在點P使得
△ADP與△BC的面積相等?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請閱讀求絕對值不等式和的解集過程:
對于絕對值不等式,從圖1所示的數(shù)軸上看:大于而小于的數(shù)絕對值是小于的,所以的解集是;
對于絕對值不等式,從圖2所示的數(shù)軸上看:小于而大于的數(shù)絕對值是大于的,所以的解集…….
解答下面的問題:
解不等式:⑴. ; ⑵. .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,直線y=kx+4與x軸正半軸交于一點A,與y軸交于點B,已知△OAB的面積為10,
(1)求這條直線的解析式;
(2)若將這條直線沿x軸翻折,求翻折后得到的直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com