【題目】如圖,⊙O內(nèi)切于正方形ABCD,邊AD、CD分別與⊙O切于點EF,點M、N分別在線段DE、DF上,且MN與⊙O相切,若MBN的面積為8,則⊙O的半徑為( 。

A.B.2C.D.2

【答案】B

【解析】

設(shè)⊙OMN相切于點K,設(shè)正方形的邊長為2a.因為AD、CD、MN是切線,可得AE=DE=DF=CF=a,MK=MENK=NF,設(shè)MK=ME=x,NK=NF=y,在RtDMN中,以為MN=x+y,DN=a-yDM=a-x,看到(x+y2=a-y2+a-x2,推出ax+ay+xy=a2,根據(jù)SBMN=S正方形ABCD-SABM-SDMN-SBCN=8,構(gòu)建方程求出a即可解決問題;

解:設(shè)⊙OMN相切于點K,設(shè)正方形的邊長為2a

∵ADCD、MN是切線,

∴AEDEDFCFa,MKME,NKNF,設(shè)MKMEx,NKNFy,

Rt△DMN中,∵MNx+yDNay,DMax

x+y2=(ay2+ax2,

∴ax+ay+xya2,

∵SBMNS正方形ABCDSABMSDMNSBCN8,

∴4a2×2a×a+x)﹣ax)(ay)﹣×2a×a+y)=8,

a2ax+ay+xy)=8

∴a28,

∴a2,

∴AB2a4,

∴⊙O的半徑為2

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)yax2+bx4a≠0)的圖象與x軸交于點A(﹣2,0)與點C8,0)兩點,與y軸交于點B,其對稱軸與x軸交于點D

1)直接寫出B點的坐標;

2)求該二次函數(shù)的解析式;

3)若點Pm,n)是該二次函數(shù)圖象上的一個動點(其中m0n0),連結(jié)PBPD,BD,AB.請問是否存在點P,使得BDP的面積恰好等于ADB的面積?若存在請求出此時點P的坐標,若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一只不透明的袋子中,裝有2個白球和1個紅球,這些球除顏色外都相同.

1)小明認為,攪勻后從中任意摸出一個球,不是白球就是紅球是等可能的,你同意他的說法嗎?為什么?

2)攪勻后從中一把摸出兩個球,請通過列表和樹狀圖求出兩個球都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙OE,交AB于點D,連接AE,∠E30°,AC5

1)求CE的長;

2)求SADCSACE的比值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)有甲、乙兩座樓房,樓間距BC50米,在乙樓頂部A點測得甲樓頂部D點的仰角為37°,在乙樓底部B點測得甲樓頂部D點的仰角為60°,則甲、乙兩樓的高度分別為多少?(結(jié)果精確到1米,sin37°≈0.60,cos37°≈0.80tan37°≈0.75,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系xOy中,雙曲線與直線yax+ba≠0)交于AB兩點,直線AB分別交x軸、y軸于C、D兩點,Ex軸上一點.已知OAOCOE,A點坐標為(3,4).

1)將線段OE沿x軸平移得線段O′E′(如圖1),在移動過程中,是否存在某個位置使|BO′AE′|的值最大?若存在,求出|BO′AE′|的最大值及此時點O′的坐標;若不存在,請說明理由;

2)將直線OA沿射線OE平移,平移過程中交的圖象于點MM不與A重合),交x軸于點N(如圖3).在平移過程中,是否存在某個位置使MNE為以MN為腰的等腰三角形?若存在,求出M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,我們規(guī)定:一個銳角的對邊與斜邊的比值稱為這個銳角的正弦值.

例如:RtABC中,∠C90°,∠A的對邊BC與斜邊AB的比值,即就是∠A的正弦值.利用量角器可以制作銳角正弦值速查卡.制作方法如下:

如圖,設(shè)OA1,以O為圓心,分別以0.05,0.1,0.15,0.2,,0.9,0.95長為半徑作半圓,再以OA為直徑作⊙M.利用銳角正弦值速查卡可以讀出相應銳角正弦的近似值.例如:60°的正弦值約在0.850.88之間取值,45°的正弦值約在0.700.72之間取值.下列角度中正弦值最接近0.94的是(  )

A.30°B.50°C.40°D.70°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形中,,是射線上一動點,以為邊向右側(cè)作等邊,點的位置隨點的位置變化而變化.

(1)如圖1,當點在菱形內(nèi)部或邊上時,連接,的數(shù)量關(guān)系是 ,的位置關(guān)系是 ;

(2)當點在菱形外部時,(1)中的結(jié)論是否還成立?若成立,請予以證明;若不成立,

請說明理由(選擇圖2,圖3中的一種情況予以證明或說理).

(3) 如圖4,當點在線段的延長線上時,連接,若 , ,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】10月期間,我市慶祝新中國成立70周年祖國萬歲的主題燈光秀展示了兩江四岸流光溢彩的壯美之景.周末,小明和小華相約一起乘輕軌去看燈光秀.已知小明家、輕軌站和小華家順次分布在同一條筆直的公路上.小明、小華打算以各自的速度步行到輕軌站,小明出發(fā)3分鐘后,小華從家里出發(fā),走了兩分鐘,小華想起沒帶相機,立即掉頭以原速的返回家中取相機,并在家中取停留5分鐘,發(fā)現(xiàn)時間來不及便立即打車前住輕軌站,最終比小明早到2分鐘.如圖是兩人之間的距離與小華出發(fā)時間之間的關(guān)系,則小明家離輕軌站的距離比小華家離輕軌站的距離少_____米.

查看答案和解析>>

同步練習冊答案