【題目】正方形ABCD中,AB=2,E是AB的中點,P是對角線AC上的一個動點,則PE+PB的最小值是 .
【答案】
【解析】解:連接DE,交AC于點P,連接BD.
∵點B與點D關(guān)于AC對稱,
∴DE的長即為PE+PB的最小值,
∵AB=2,E是BC的中點,
∴AE=1,
在Rt△CDE中,
DE= = = .
所以答案是: .
【考點精析】利用勾股定理的概念和正方形的性質(zhì)對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料: 小明在學(xué)習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:
設(shè)(其中均為整數(shù)),則有.
∴.這樣小明就找到了一種把部分的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
當均為正整數(shù)時,若,用含m、n的式子分別表示,得= ,= ;
(2)利用所探索的結(jié)論,找一組正整數(shù),填空: + =( + )2;
(3)若,且均為正整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC,求證∠1=∠2.以下是推理過程,請你填空:
解:∵CD⊥AB,FG⊥AB
∴∠CDB=∠FGB=90°( 垂直定義)
∴ ∥FG( )
∴ =∠3 ( )
又∵DE∥BC ( 已知 )
∴∠ =∠3 ( 兩直線平行,內(nèi)錯角相等 )
∴∠1=∠2 ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線 y=x+2 與兩坐標軸分別交于A、B 兩點,點 C 是 OB 的中點,D、E 分 別是直線 AB、y 軸上的動點,則△CDE 周長的最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點E為AB的中點,F(xiàn)為BC上任意一點,把△BEF沿直線EF翻折,點B的對應(yīng)點B′落在對角線AC上,則與∠FEB一定相等的角(不含∠FEB)有個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線 (x>0)經(jīng)過矩形OABC的邊AB、BC上的點F、E,其中CE= CB,AF= AB,且四邊形OEBF的面積為2,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E、F分別BC、AD邊上,AE=BF,AE與BF交于G,ED與CF交于H.求證:
(1)GH∥BC;
(2)GH= AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,E,F(xiàn),C在一條直線上,若將△DEC的邊EC沿AC方向平移,平移過程中始終滿足下列條件:AE=CF,DE⊥AC于點E,BF⊥AC于點F,且AB=CD.則當點E,F(xiàn)不重合時,BD與EF的關(guān)系是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com