【題目】(問(wèn)題與情境)

在綜合與實(shí)踐課上,老師組織同學(xué)們以三角形紙片的旋轉(zhuǎn)為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖①,現(xiàn)有矩形紙片.連接,將矩形沿剪開(kāi),得到.保持位置不變,將從圖①的位置開(kāi)始,繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角為

(操作發(fā)現(xiàn))

1)在旋轉(zhuǎn)過(guò)程中,連接,則當(dāng)時(shí),的值是________

2)如圖②,將圖①中的旋轉(zhuǎn),當(dāng)點(diǎn)E落在延長(zhǎng)線上時(shí)停止旋轉(zhuǎn),求出此時(shí)的值;

(實(shí)踐探究)

3)如圖③,將圖②中的繼續(xù)旋轉(zhuǎn),當(dāng)時(shí)停止旋轉(zhuǎn),直接寫(xiě)出此時(shí)的度數(shù),并求出的面積.

【答案】1;(2;(3

【解析】

解:(1;

2)如圖①,過(guò)點(diǎn)C于點(diǎn)F

∵題圖①中四邊形是矩形,,∴

中,

中,

3的度數(shù)為60°

如圖②,設(shè)的中點(diǎn)為G,連接,過(guò)點(diǎn)A,交延長(zhǎng)線于點(diǎn)H

,

∴四邊形是矩形.

中,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA是⊙O的切線,切點(diǎn)為A,AC是⊙O的直徑,過(guò)A點(diǎn)作ABPO于點(diǎn)D,交⊙OB,連接BC,PB

1)求證:PB是⊙O的切線;

2)若cosPAB=BC=2,求PO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,.點(diǎn)P是平面內(nèi)不與AC重合的任意一點(diǎn),連接,將線段繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)得到線段,連接.點(diǎn)M的中點(diǎn),點(diǎn)N的中點(diǎn).

1)問(wèn)題發(fā)現(xiàn)

如圖1,當(dāng)時(shí),的值是________,直線與直線相交所成的較小角的度數(shù)是________

2)類(lèi)比探究

如圖2,當(dāng)時(shí),請(qǐng)寫(xiě)出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說(shuō)明理由.

3)解決問(wèn)題

如圖3,當(dāng)時(shí),若點(diǎn)E的中點(diǎn),點(diǎn)P在直線上,請(qǐng)直接寫(xiě)出點(diǎn)B,P,D在同一條直線上時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】開(kāi)學(xué)前夕,某文具店準(zhǔn)備購(gòu)進(jìn)AB兩種品牌的文具袋進(jìn)行銷(xiāo)售,若購(gòu)進(jìn)A品牌文具袋和B品牌文具袋各5個(gè)共花費(fèi)125元,購(gòu)進(jìn)A品牌文具袋3個(gè)和B品牌文具袋各4個(gè)共花費(fèi)90元.

1)求購(gòu)進(jìn)A品牌文具袋和B品牌文具袋的單價(jià);

2)若該文具店購(gòu)進(jìn)了A,B兩種品牌的文具袋共100個(gè),其中A品牌文具袋售價(jià)為12元,B品牌文具袋售價(jià)為23元,設(shè)購(gòu)進(jìn)A品牌文具袋x個(gè),獲得總利潤(rùn)為y元.

y關(guān)于x的函數(shù)關(guān)系式;

要使銷(xiāo)售文具袋的利潤(rùn)最大,且所獲利潤(rùn)不超過(guò)進(jìn)貨價(jià)格的40%,請(qǐng)你幫該文具店設(shè)計(jì)一個(gè)進(jìn)貨方案,并求出其所獲利潤(rùn)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)踐操作

如圖①,將矩形紙片沿對(duì)角線翻折,使點(diǎn)落在矩形所在平面內(nèi),相交于點(diǎn)E,連接

解決問(wèn)題

1)在圖①中,

的位置關(guān)系為________;

②將剪下后展開(kāi),得到的圖形是________;

2)若圖①中的矩形變?yōu)槠叫兴倪呅螘r(shí)(),如圖②所示,結(jié)論①和結(jié)論②是否成立,若成立,請(qǐng)?zhí)暨x其中的一個(gè)結(jié)論加以證明,若不成立,請(qǐng)說(shuō)明理由;

拓展應(yīng)用

3)在圖②中,若,當(dāng)恰好為直角三角形時(shí),求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知拋物線x軸交于點(diǎn)A3,0)和點(diǎn)B,與y軸相交于點(diǎn)C0,3),拋物線的頂點(diǎn)為點(diǎn)D

1)求拋物線的表達(dá)式及頂點(diǎn)D的坐標(biāo);

2)聯(lián)結(jié)AD、AC、CD,求∠DAC的正切值;

3)如果點(diǎn)P是原拋物線上的一點(diǎn),且∠PAB=DAC,將原拋物線向右平移m個(gè)單位(m>0),使平移后新拋物線經(jīng)過(guò)點(diǎn)P,求平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB=90°BC=3,AC=4D是邊AB的中點(diǎn),點(diǎn)E為邊AC上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、C不重合),過(guò)點(diǎn)EEFAB,交邊BC于點(diǎn)F.聯(lián)結(jié)DEDF,設(shè)CE=x

1)當(dāng)x =1時(shí),求DEF的面積;

2)如果點(diǎn)D關(guān)于EF的對(duì)稱(chēng)點(diǎn)為D’,點(diǎn)D’ 恰好落在邊AC上時(shí),求x的值;

3)以點(diǎn)A為圓心,AE長(zhǎng)為半徑的圓與以點(diǎn)F為圓心,EF長(zhǎng)為半徑的圓相交,另一個(gè)交點(diǎn)H恰好落在線段DE上,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,公路MN為東西走向,在點(diǎn)M北偏東36.5°方向上,距離5千米處是學(xué)校A;在點(diǎn)M北偏東45°方向上距離千米處是學(xué)校B.(參考數(shù)據(jù):,).

1)求學(xué)校A,B兩點(diǎn)之間的距離

2)要在公路MN旁修建一個(gè)體育館C,使得A,B兩所學(xué)校到體育館C的距離之和最短,求這個(gè)最短距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015德陽(yáng))大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價(jià)比里料的單價(jià)的2倍還多10元,一件外套的布料成本為76元.

(1)求面料和里料的單價(jià);

(2)該款外套9月份投放市場(chǎng)的批發(fā)價(jià)為150/件,出現(xiàn)購(gòu)銷(xiāo)兩旺態(tài)勢(shì),10月份進(jìn)入批發(fā)淡季,廠方?jīng)Q定采取打折促銷(xiāo).已知生產(chǎn)一件外套需人工等固定費(fèi)用14元,為確保每件外套的利潤(rùn)不低于30元.

①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤(rùn)=銷(xiāo)售價(jià)﹣布料成本﹣固定費(fèi)用)

②進(jìn)入11月份以后,銷(xiāo)售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對(duì)VIP客戶在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施更大的優(yōu)惠,對(duì)普通客戶在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施價(jià)格上。阎獙(duì)VIP客戶的降價(jià)率和對(duì)普通客戶的提價(jià)率相等,結(jié)果一個(gè)VIP客戶用9120元批發(fā)外套的件數(shù)和一個(gè)普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價(jià)率.

查看答案和解析>>

同步練習(xí)冊(cè)答案