【題目】為了倡導(dǎo)綠色出行,某市政府2016年投資了320萬元,首期建成120個公共自行車站點,配置2500輛公共自行車,2017年又投資了104萬元新建了40個公共自行車站點,配置800輛公共自行車.

(1)請問每個站點的造價和公共自行車的單價分別是多少萬元?

(2)若到2020年該市政府將再建造個新公共自行車站點和配置輛公共自行車,并且公共自行車數(shù)量不超過新公共自行車站點數(shù)量的23倍,并且再建造的新公共自行車站點不超過102個,市政府共有幾種選擇方案,哪種方案市政府投入的資金最少?(注:從2016年起至2020年,每個站點的造價和公共自行車的單價每年都保持不變)

【答案】(1)每個站點的造價1萬元,公共自行車的單價0.08萬元;

(2)市政府共有3種選擇方案,第一種方案市政府投入的資金最,資金為284萬元.

【解析】試題分析:(1)設(shè)每個站點的造價萬元,公共自行車的單價萬元,根據(jù)題意列出方程組求出即可;

(2)根據(jù)題意列出不等式組即可得.

試題解析:(1)設(shè)每個站點的造價萬元,公共自行車的單價萬元,

根據(jù)題意,得,

解這個方程組,得,

答:每個站點的造價1萬元,公共自行車的單價0.08萬元.

(2)根據(jù)題意可得 ,解得 ,

為整數(shù),

=100或=101或=102,

∴共有3種方案:

第一種方案:建造100個新公共自行車站點,配置2300輛公共自行車;資金為:(萬元)

第二種方案:建造101個新公共自行車站點,配置2299輛公共自行車;資金為:(萬元)

第三種方案:建造102個新公共自行車站點,配置2298輛公共自行車;資金為:(萬元)

∴第一種方案市政府投入的資金最少 ,

答:市政府共有3種選擇方案,第一種方案市政府投入的資金最,資金為284萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠DAE=∠BCF.

(1)試判斷直線AE與CF有怎樣的位置關(guān)系?并說明理由;
(2)若∠BCF=70°,求∠ADF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離是5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CDACB的頂點A在△ECD的斜邊DE上.

1)求證:AE2+AD2=2AC2;

2)如圖2,若AE=3AC=,點FAD的中點,求出CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2 x﹣9與x軸交于A、B兩點,與y軸交于點C,連接BC、AC.

(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運(yùn)動(點E與點A、B不重合),過點E作直線l平行BC,交AC于點D.設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)將一張長方形紙片按如圖1所示的方式折疊,BC、BD為折痕,求∠CBD的度數(shù);

(2)將一張長方形紙片按如圖2所示的方式折疊,BC、BD為折痕,若∠ABE′=50°,求∠CBD的度數(shù);

(3)將一張長方形紙片按如圖3所示的方式折疊,BCBD為折痕,若∠ABE′=α,請直接寫出∠CBD的度數(shù)(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:

已知二次三項式x2﹣4x+m有一個因式是(x+3),求另一個因式以及m的值.

小明發(fā)現(xiàn),可以設(shè)另一個因式為(x+n),得

x2﹣4x+m=(x+3)(x+n

x2﹣4x+mx2+(n+3)x+3n

利用方程組可以解決.

請回答:

另一個因式為   ,m的值為   ;

參考小明的方法,解決下面的問題:

已知二次三項式2x2+3xk有一個因式是(x﹣4),求另一個因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“端午節(jié)”是中華民族古老的傳統(tǒng)節(jié)日.甲、乙兩家超市在“端午節(jié)”當(dāng)天對一種原來售價相同的粽子分別推出了不同的優(yōu)惠方案.

甲超市方案:購買該種粽子超過200元后,超出200元的部分按95%收費(fèi);

乙超市方案:購買該種粽子超過300元后,超出300元的部分按90%收費(fèi).

設(shè)某位顧客購買了x元的該種粽子.

1)補(bǔ)充表格,填寫在“橫線”上:

2)列式計算說明,如果顧客在“端午節(jié)”當(dāng)天購買該種粽子超過200元,那么到哪家超市花費(fèi)更少?

x

(單位:元)

實際在甲超市的花費(fèi)

(單位:元)

實際在乙超市的花費(fèi)

(單位:元)

0x200

x

x

200x300

x

x300

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC, D為直線BC上一動點(不與BC重合),在AD的右側(cè)作ADE,使得AE=AD,∠DAE=BAC,連接CE

1)當(dāng)D在線段BC上時,求證:BAD CAE;

2)當(dāng)點D運(yùn)動到何處時,ACDE,并說明理由;

3)當(dāng)CEAB時,若ABD中最小角為20°,直接寫出∠ADB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案