【題目】下列說法正確的是( )
A. 過一點(diǎn)有且只有一條直線與已知直線平行.
B. 在同一平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直.
C. 有公共頂點(diǎn)且有一條公共邊的兩個角互為鄰補(bǔ)角.
D. 相等的兩個角是對頂角.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對下列多項(xiàng)進(jìn)行因式分解:
(1).(x+2)(x+4)+1.
(2).x2﹣5x﹣6
(3).(a2+4)2﹣16a2
(4).18b(a﹣b)2﹣12(a﹣b)3
【答案】(1)(x+3)2(2)(x﹣6)(x+1);(3)(a+2)2(a﹣2)2;(4) 6(a﹣b)2(5b﹣2a)
【解析】試題分析:(1)先展開合并后利用完全平方公式因式分解即可;(2)利用十字相乘法因式分解即可;(3)先利用平方差公式,再利用完全平方公式分解因式即可;(4)直接利用提公因式法因式分解即可.
試題解析:
(1)原式=x2+6x+9=(x+3)2.
(2)原式=(x﹣6)(x+1);
(3)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)2;
(4)原式=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);
【題型】解答題
【結(jié)束】
23
【題目】計算下列各分式:
(1).
(2). -a+b
(3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)過點(diǎn)(-2,5),和直線,分別在下列條件下求這個一次函數(shù)的解析式.
(1)它的圖象與直線平行;
(2)它的圖象與y軸的交點(diǎn)和直線與y軸的交點(diǎn)關(guān)于軸對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若點(diǎn)P的坐標(biāo)為,則定義: 為點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”.
(1)若已知P(-2,3),則點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”d(-2,3)= ;
(2)若點(diǎn)P(x,y)滿足2x+y=0,且點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”d(x,y)=6,求出P的坐標(biāo);
(3)若點(diǎn)P到坐標(biāo)原點(diǎn)O的“折線距離”d(x,y)=3,試在坐標(biāo)系內(nèi)畫出所有滿足條件的點(diǎn)P構(gòu)成的圖形,并求出該圖形的所圍成封閉區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知為上的一點(diǎn),按下列要求進(jìn)行作圖.
(1)作的平分線.
(2)在上取一點(diǎn),使得.
(3)愛動腦筋的小剛經(jīng)過仔細(xì)觀察后,進(jìn)行如下操作:在邊上取一點(diǎn),使得,這時他發(fā)現(xiàn)與之間存在一定的數(shù)量關(guān)系,請寫出 與的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, .
(1)用直尺和圓規(guī)作出一條過點(diǎn)的直線,使得點(diǎn)關(guān)于直線的對稱點(diǎn)落在邊上(不寫作法,保留作圖痕跡).
(2)設(shè)直線與邊的交點(diǎn)為,且,請你通過觀察或測量,猜想線段之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com