【題目】我國傳統(tǒng)的計重工具﹣﹣秤的應(yīng)用,方便了人們的生活.如圖1,可以用秤砣到秤紐的水平距離,來得出秤鉤上所掛物體的重量.稱重時,若秤桿上秤砣到秤紐的水平距離為x(厘米)時,秤鉤所掛物重為y(斤),則y是x的一次函數(shù).下表中為若干次稱重時所記錄的一些數(shù)據(jù).
x(厘米) | 1 | 2 | 4 | 7 | 11 | 12 |
y(斤) | 0.75 | 1.00 | 1.50 | 2.75 | 3.25 | 3.50 |
(1)在上表x,y的數(shù)據(jù)中,發(fā)現(xiàn)有一對數(shù)據(jù)記錄錯誤.在圖2中,通過描點的方法,觀察判斷哪一對是錯誤的?
(2)根據(jù)(1)的發(fā)現(xiàn),問秤桿上秤砣到秤紐的水平距離為16厘米時,秤鉤所掛物重是多少?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,半徑OA丄OB,點D在OA或OA的延長線上(不與點O,A重合),直線BD交⊙O于點C,過C作⊙O的切線交直線OA于點P.
(1)如圖(1),點D在線段OA上,若∠OBC=15°, 求∠OPC的大。
(2)如圖(2),點D在OA的延長線上,若∠OBC=65°,求∠OPC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點叫做格點.的頂點在格點上,僅用無刻度的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實線表示,按步驟完成下列問題:
(1)作點A關(guān)于BC的對稱點F;
(2)將線段AB向右平移得到線段DE,DE與BC交于點M,使;
(3)線段DE可以由線段BF繞點O順時針旋轉(zhuǎn)度而得到(B,F的對應(yīng)點分別為D,E),在圖中畫出點O
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,階梯圖的每個臺階上都標(biāo)著一個數(shù),從下到上的第1個至第4個臺階上依次標(biāo)著﹣3,﹣2,﹣1,0,且任意相鄰四個臺階上數(shù)的和都相等.
(1)求第五個臺階上的數(shù)x是多少?
(2)求前21個臺階上的數(shù)的和是多少?
(3)發(fā)現(xiàn):數(shù)的排列有一定的規(guī)律,第n個﹣2出現(xiàn)在第 個臺階上;
(4)拓展:如果倩倩小同學(xué)一步只能上1個或者2個臺階,那么她上第一個臺階的方法有1種:1=1,上第二個臺階的方法有2種:1+1=2或2=2,上第三個臺階的方祛有3種:1+1+1=3、1+2=3或2+1=3,…,她上第五個臺階的方法可以有 種.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同型號的甲、乙兩輛車加滿氣體燃料后均可行駛210km.它們各自單獨行駛并返回的最遠(yuǎn)距離是105km.現(xiàn)在它們都從A地出發(fā),行駛途中停下來從甲車的氣體燃料桶抽一些氣體燃料注入乙車的氣體燃料桶,然后甲車再行駛返回A地,而乙車?yán)^續(xù)行駛,到B地后再行駛返回A地.則B地最遠(yuǎn)可距離A地( 。
A.120kmB.140kmC.160kmD.180km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖l,在中,,,分別是邊,上的動點,且,是的中點,連接,,,設(shè),的面積為,圖2是關(guān)于的函數(shù)圖象,則下列說法不正確的是( )
A.是等腰直角三角形B.
C.的周長可以等于6D.四邊形的面積為2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點,過點的拋物線與軸的另一個交點為.
(1)求拋物線的解析式和點的坐標(biāo);
(2)是直線上方拋物線上一動點,交于.設(shè),請求出的最大值和此時點的坐標(biāo);
(3)是軸上一動點,連接,將繞點逆時針旋轉(zhuǎn)得線段,若點恰好落在拋物線上,請直接寫出此時點的坐標(biāo).
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點C,則點C的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在四邊形ABCD內(nèi)接于⊙O,AB=AC,BD為⊙O的直徑,AE⊥BD,垂足為點E,交BC于點F.
(1)求證:FA=FB;
(2)如圖2,分別延長AD,BC交于點G,點H為FG的中點,連接DH,若tan∠ACB=,求證:DH為⊙O的切線;
(3)在(2)的條件下,若DA=3,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com