分析 首先連接DF,BE,易得S△ADF=S△ABE=$\frac{1}{2}$S?ABCD,又由AE=AF,DG⊥AF,BH⊥AE,利用面積法,即可證得結(jié)論.
解答 證明:連接DF,BE,
∵點(diǎn)E,F(xiàn)分別在?ABCD的邊DC,CB上,
∴S△ADF=$\frac{1}{2}$S?ABCD,S△ABE=$\frac{1}{2}$S?ABCD,
∴S△ADF=S△ABE,
∵DG⊥AF,BH⊥AE,
∴$\frac{1}{2}$AF•DG=$\frac{1}{2}$AE•BH,
∵AE=AF,
∴DG=BH.
點(diǎn)評 此題考查了平行四邊形的性質(zhì).注意利用S△ADF=S△ABE求解是解此題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{5\sqrt{2}}{2}$ | C. | $\frac{7\sqrt{2}}{2}$ | D. | $\frac{9\sqrt{2}}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com