【題目】如圖,⊙O的內接△ABC的外角∠ACE的平分線交⊙O于點D.DF⊥AC,垂足為F,DE⊥BC,垂足為E.給出下列4個結論:①CE=CF;②∠ACB=∠EDF;③DE是⊙O的切線;④.其中一定成立的是( )
A.①②③ B.②③④ C.①③④ D.①②④
【答案】D.
【解析】
試題分析:①∵∠DCE=∠DCF,∠DEC=∠DFC,DC=DC,∴△CDE≌△CDF,得CE=CF.故成立;
②∠ACB+∠ACE=180°,根據(jù)四邊形內角和定理得∠ACE+∠EDF=180°,所以∠ACB=∠EDF,故成立;
③連接OD、OC.則∠ODC=∠OCD.假如DE是切線,則OD⊥DE,因BE⊥DE,所以OD∥BE,∠DCE=∠ODC=∠OCD,而∠DCE=∠DCA,∠OCD≠∠DCA,故DE不是切線;
④根據(jù)圓內接四邊形的外角等于內對角得∠DCE=∠DAB,所以∠DAB=∠DCA,根據(jù)圓周角定理判斷弧AD=弧BD.故成立.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F是對角線BD上兩點,且∠EAF=45°,將△ADF繞點A順時針旋轉90°后,得到△ABQ,連接EQ,求證:
(1)EA是∠QED的平分線;
(2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求完成下列題目.
(1)求: + + +…+ 的值. 對于這個問題,可能有的同學接觸過,一般方法是考慮其中的一般項,注意到上面和式的每一項可以寫成 的形式,而 = ﹣ ,這樣就把 一項(分)裂成了兩項.
試著把上面和式的每一項都裂成兩項,注意觀察其中的規(guī)律,求出上面的和,并直接寫出 + + +…+ 的值.
(2)若 = + ①求:A、B的值:
②求: + +…+ 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點B、E、F、C依次在同一條直線上,AF⊥BC,DE⊥BC,垂足分別為F、E,且AB=DC,BE=CF.試說明AB∥DC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,BC=3,AC=4,點P在以C為圓心,5為半徑的圓上,連結PA,PB.若PB=4,則PA的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)圖中給出的信息,解答下列問題:
(1)放入一個小球水面升高cm,放入一個大球水面升高cm.
(2)放入大球、小球共10個,如果要使水面上升到50cm,求放入大球、小球的個數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com