【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,弦AD平分∠BAC,交BC于點E,AB=6,AD=5,則AE的長為(  )

A.2.5
B.2.8
C.3
D.3.2

【答案】B
【解析】如圖1,連接BD、CD,∵AB為⊙O的直徑,∴∠ADB=90°,∴BD= , ∵弦AD平分∠BAC,∴CD=BD= ,
∴∠CBD=∠DAB,在△ABD和△BED中, ∴△ABD∽△BED,∴= , 即= , 解得DE= , ∴AE=AD﹣DE=5﹣=2.8.
故選:B

【考點精析】掌握勾股定理的概念和圓周角定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級為了解學(xué)生課堂發(fā)言情況,隨機抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進行了統(tǒng)計,其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:


(1)①則樣本容量容量是.
②并補全直方圖;
(2)該年級共有學(xué)生500人,請估計全年級在這天里發(fā)言次數(shù)不少于12的次數(shù);
(3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一測量愛好者,在海邊測量位于正東方向的小島高度AC,如圖所示,他先在點B測得山頂點A的仰角為30°,然后向正東方向前行62米,到達D點,在測得山頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求小島高度AC(結(jié)果精確的1米,參考數(shù)值:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD是△ABC的角平分線,⊙O經(jīng)過A、B、D三點.過點B作BE∥AD,交⊙O于點E,連接ED。

(1)求證:ED∥AC
(2)若BD=2CD,設(shè)△EBD的面積為S1 , △ADC的面積為S2 , 且S12﹣16S2+4=0,求△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強學(xué)生環(huán)保意識,某中學(xué)組織全校2000名學(xué)生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學(xué)的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)若抽取的成績用扇形圖來描述,則表示“第三組(79.5~89.5)”的扇形的圓心角為
(2)若成績在90分以上(含90分)的同學(xué)可以獲獎,請估計該校約有多少名同學(xué)獲獎?
(3)某班準備從成績最好的4名同學(xué)(男、女各2名)中隨機選取2名同學(xué)去社區(qū)進行環(huán)保宣傳,則選出的同學(xué)恰好是1男1女的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2﹣2mx+m2+m﹣1(m是常數(shù))的頂點為P,直線l:y=x﹣1

(1)求證:點P在直線l上。
(2)當m=﹣3時,拋物線與x軸交于A,B兩點,與y軸交于點C,與直線l的另一個交點為Q,M是x軸下方拋物線上的一點,∠ACM=∠PAQ(如圖),求點M的坐標
(3)若以拋物線和直線l的兩個交點及坐標原點為頂點的三角形是等腰三角形,請直接寫出所有符合條件的m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是( 。

A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是“東方之星”救援打撈現(xiàn)場圖,小紅據(jù)此構(gòu)造出一個如圖2所示的數(shù)學(xué)模型,已知:A、B、D三點在同一水平線上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.

(1)求點B到AC的距離.
(2)求線段CD的長度.

查看答案和解析>>

同步練習冊答案