【題目】如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始向點(diǎn)B1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C2cm/s的速度移動(dòng).如果點(diǎn)P,Q分別從點(diǎn)A,B同時(shí)出發(fā),那么(1)經(jīng)過幾秒后,△PBQ的面積為4cm2?

2)并通過計(jì)算回答△PBQ的面積能否達(dá)到8cm2?

【答案】(1)經(jīng)過1秒后,PBQ的面積為4 (2)不能,理由見解析.

【解析】

根據(jù)題意表示出BPBQ的長,

1)利用三角形的面積公式列方程求解即可;

2)利用三角形的面積公式列方程,再根據(jù)根的判別式判斷方程根的情況即可.

解:根據(jù)題意,得BPABAP5t,BQ2t,

1)設(shè)t秒后,PBQ的面積為4cm2,

根據(jù)三角形的面積公式,得BPBQ4,即t5t)=4,

整理得:t25t40

解得t1秒或t4秒(舍去).

答:經(jīng)過1秒后,PBQ的面積等于4cm2;

2PBQ的面積不能達(dá)到8cm2

理由:根據(jù)三角形的面積公式,得BPBQ8,即t5t)=8

整理得:t25t80,

=(524×1×870,

∴方程無實(shí)數(shù)根,

PBQ的面積不能達(dá)到8cm2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,在四邊形中,,點(diǎn)的中點(diǎn),若的平分線,試判斷,之間的等量關(guān)系.

解決此問題可以用如下方法:延長的延長線于點(diǎn),易證得到,從而把,轉(zhuǎn)化在一個(gè)三角形中即可判斷.

,,之間的等量關(guān)系________;

2)問題探究:如圖②,在四邊形中,,的延長線交于點(diǎn),點(diǎn)的中點(diǎn),若的平分線,試探究,之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:有這樣一個(gè)問題:關(guān)于的一元二次方程有兩個(gè)不相等的且非零的實(shí)數(shù)根探究,滿足的條件.

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:①設(shè)一元二次方程對(duì)應(yīng)的二次函數(shù)為;

②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中,,滿足的條件,列表如下:

方程根的幾何意義:

方程兩根的情況

對(duì)應(yīng)的二次函數(shù)的大致圖象

,滿足的條件

方程有兩個(gè)不相等的負(fù)實(shí)根

____________

方程有兩個(gè)不相等的正實(shí)根

____________

____________

1)參考小明的做法,把上述表格補(bǔ)充完整;

2)若一元二次方程有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于-1,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)寫出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,AB=AC=5,BC=6,D,E分別是邊AB,AC上的兩個(gè)動(dòng)點(diǎn)(D不與A,B重合),且保持DEBC,以DE為邊,在點(diǎn)A的異側(cè)作正方形DEFG.

(1)當(dāng)FGBC重合時(shí),求正方形DEFG的邊長;

(2)設(shè)AD=x,△ABC與正方形DEFG重疊部分的面積為y,試求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;

(3)當(dāng)△BDG是等腰三角形時(shí),請直接寫出AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A1,3),與x軸的一個(gè)交點(diǎn)B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)是(﹣10);當(dāng)1x4時(shí),有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x22x+3的圖象與x軸交于A.B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

(1)求點(diǎn)A. B.C的坐標(biāo);

(2)判斷以點(diǎn)AC、D為頂點(diǎn)的三角形的形狀,并說明理由;

(3)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A.B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQAB交拋物線于點(diǎn)Q,過點(diǎn)QQNx軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y=的圖象如圖所示,A,P為該圖象上的點(diǎn),且關(guān)于原點(diǎn)成中心對(duì)稱.在△PAB中,PB∥y軸,AB∥x軸,PB與AB相交于點(diǎn)B.若△PAB的面積大于12,則關(guān)于x的方程(a-1)x2-x+=0的根的情況是________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在利用描點(diǎn)法畫二次函數(shù)yax2+bx+ca0)的圖象時(shí),先取自變量x的一些值,計(jì)算出相應(yīng)的函數(shù)值y,如下表所示:

x

0

1

2

3

4

y

3

0

1

0

3

接著,他在描點(diǎn)時(shí)發(fā)現(xiàn),表格中有一組數(shù)據(jù)計(jì)算錯(cuò)誤,他計(jì)算錯(cuò)誤的一組數(shù)據(jù)是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案