【題目】己知:如圖,E、F分別是ABCD的AD、BC邊上的點(diǎn),且AE=CF.
(1)求證:△ABE≌△CDF;
(2)若M、N分別是BE、DF的中點(diǎn),連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結(jié)論.
【答案】(1)、證明過程見解析;(2)、平行四邊形;證明過程見解析.
【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)和全等三角形的判定,在△ABE和△CDF中,很容易確定SAS,即證結(jié)論;
(2)在已知條件中求證全等三角形,即△ABE≌△CDF,△MBF≌△NDE,得兩對(duì)邊分別對(duì)應(yīng)相等,根據(jù)平行四邊形的判定,即證.
試題解析:(1)∵ABCD中,AB=CD,∠A=∠C,
又∵AE=CF,
∴△ABE≌△CDF;
(2)四邊形MFNE平行四邊形.
由(1)知△ABE≌△CDF,
∴BE=DF,∠ABE=∠CDF,
又∵M(jìn)E=BM=BE,NF=DN=DF
∴ME=NF=BM=DN,
又∵∠ABC=∠CDA,
∴∠MBF=∠NDE,又∵AD=BC,AE=CF,∴DE=BF,
∴△MBF≌△NDE,
∴MF=NE,
∴四邊形MFNE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校車安全是近幾年社會(huì)關(guān)注的熱點(diǎn)問題,安全隱患主要是超速和超載.某中學(xué)九年級(jí)數(shù)學(xué)活動(dòng)小組進(jìn)行了測(cè)試汽車速度的實(shí)驗(yàn),如圖,先在筆直的公路l旁選取一點(diǎn)A,在公路l上確定點(diǎn)B、C,使得AC⊥l,∠BAC=60℃,再在AC上確定點(diǎn)D,使得∠BDC=75°,測(cè)得AD=40米,已知本路段對(duì)校車限速是50千米/時(shí),測(cè)得某校車從B到C勻速行駛用時(shí)10秒。
(1)、求CD的長(zhǎng)。(結(jié)果保留根號(hào))
(2)、問這輛車在本路段是否超速?請(qǐng)說明理由(參考數(shù)據(jù):=1.41,=1.73
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我市開展“陽(yáng)光”活動(dòng)中,為解中學(xué)生活動(dòng)開展情況,隨機(jī)抽查全市八年級(jí)部分同學(xué)1分鐘,將抽查結(jié)果進(jìn)行,并繪制兩個(gè)不完整圖.請(qǐng)根據(jù)圖中提供信息,解答問題:
(1)本次共抽查多少名學(xué)生?
(2)請(qǐng)補(bǔ)全直方圖空缺部分,直接寫扇形圖中范圍135≤x<155所在扇形圓心角度數(shù).
(3)若本次抽查中,在125次以上(含125次)為優(yōu)秀,請(qǐng)你估計(jì)全市8000名八年級(jí)學(xué)生中有多少名學(xué)生成績(jī)?yōu)閮?yōu)秀?
(4)請(qǐng)你根據(jù)以上信息,對(duì)我市開展學(xué)生活動(dòng)談?wù)勛约嚎捶ɑ蚪ㄗh
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】政府為了更好地加強(qiáng)城市建設(shè),就社會(huì)熱點(diǎn)問題廣泛征求市民意見,調(diào)查方式是發(fā)調(diào)查表,要求每位被調(diào)查人員只寫一個(gè)你最關(guān)心的有關(guān)城市建設(shè)的問題,經(jīng)統(tǒng)計(jì)整理,發(fā)現(xiàn)對(duì)環(huán)境保護(hù)問題提出的最多,有700人,同時(shí)作出相應(yīng)的條形統(tǒng)計(jì)圖,如圖所示,請(qǐng)回答下列問題.
(1)共收回調(diào)查表張;
(2)提道路交通問題的有人;
(3)請(qǐng)你把這個(gè)條形統(tǒng)計(jì)圖用扇形統(tǒng)計(jì)圖表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某三角形的第一條邊長(zhǎng)(2a﹣b)厘米,第二條邊比第一條邊長(zhǎng)(a+b)厘米,第三條邊是第一條邊的2倍少b厘米,那么這個(gè)三角形的周長(zhǎng)是厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店計(jì)劃購(gòu)進(jìn)甲、乙兩種新型汽車共140輛,這兩種汽車的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(萬元/輛) | 售價(jià)(萬元/輛) | |
甲 | 5 | 8 |
乙 | 9 | 13 |
(1)若該汽車專賣店投入1000萬元資金進(jìn)貨,則購(gòu)進(jìn)甲乙兩種新型汽車各多少輛?
(2)若該汽車專賣店準(zhǔn)備乙種型號(hào)汽車的進(jìn)貨量不超過甲種型號(hào)汽車的進(jìn)貨量的3倍,應(yīng)怎樣安排進(jìn)貨方案,才能使該汽車專賣店售完這兩種新型汽車后獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(其它成本不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊分別為a,b,c,△A'B'C'的三邊分別為a',b',c',且有a2+a'2+b2+b'2+c2+c'2=2ab'+2bc'+2ca',則△ABC與△A'B'C'( )
A. 一定全等 B. 不一定全等 C. 一定不全等 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖3,D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)
互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com