【題目】已知:三點A(-1,1),B(-3,2),C(-4,-1).

(1)作出與△ABC關(guān)于原點對稱的△A1B1C1,并寫出各頂點的坐標(biāo);

(2)作出與△ABC關(guān)于P(1,-2)點對稱的△A2B2C2,并寫出各頂點的坐標(biāo).

【答案】1)圖見詳解;A11,-1),B13-2),C14,1

2)圖見詳解;A23,-5),B25,-6),C26,-3

【解析】

1)由于關(guān)于原點對稱的點的坐標(biāo)的橫坐標(biāo)與縱坐標(biāo)分別互為相反數(shù),可先求出A-1,1),B-3,2),C-4,-1)的關(guān)于原點對稱的點的坐標(biāo),再描出相應(yīng)的點,連線即可.
2)如果兩點(m,n)(a,b)關(guān)于P1,-2)對稱,則存在等式,,據(jù)此計算出A2、B2C2的坐標(biāo),連線即可.

1A-1,1),B-3,2),C-4,-1)關(guān)于原點對稱的點的坐標(biāo)為A11,-1),B13-2),C141),連接各點即可.如圖:


2)設(shè)A-11),B-3,2),C-4-1)關(guān)于P1,-2)的對稱點坐標(biāo)為A2am),B2b,n),C2c,s),則

,解得,解得;

,解得;,解得;

,解得,解得

A23,-5),B25,-6),C26,-3).
如圖:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=a4x+c的圖像經(jīng)過點A和點B

1)求該二次函數(shù)的表達(dá)式;

2)寫出該拋物線的對稱軸及頂點坐標(biāo);

3)點Pmm)與點Q均在該函數(shù)圖像上(其中m0),且這兩點關(guān)于拋物線的對稱軸對稱,求m的值及點Qx軸的距離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰RtOAB的頂點Ax軸的正半軸上,頂點B的坐標(biāo)為(3,3),點C的坐標(biāo)為(10),點P為斜邊OB上的一個動點,則PA+PC的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠A90°,ABAC,∠ABC的角平分線交ACD,BD4,過點CCEBDBD的延長線于E,則CE的長為( 。

A.B.2C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

1)探究:

①數(shù)軸上表示71的兩點之間的距離是_______

②數(shù)軸上表示﹣2和﹣9的兩點之間的距離是________

2)歸納:

一般的,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于_______

3)應(yīng)用:

①若數(shù)軸上表示數(shù)a的點位于﹣54之間,則|a+5|+|a4|的值=________

②若a表示數(shù)軸上的一個有理數(shù),且|a3|=| a+1|,則a =______.

③若a表示數(shù)軸上的一個有理數(shù),且|a+5|+|a4|9,則有理數(shù)a的取值范圍是______.

4)拓展:

已知,如圖A、B分別為數(shù)軸上的兩點,A點對應(yīng)的數(shù)為-10,B點對應(yīng)的數(shù)為70.若當(dāng)電子螞蟻PA點出發(fā),以3個單位/秒的速度向右運動,同時另一只電子螞蟻Q恰好從B點出發(fā),以2單位/秒的速度向左運動,求經(jīng)過多長時間兩只電子螞蟻在數(shù)軸上相距35個單位長度,并寫出此時點P所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上的一個動點,過點Px軸的垂線,垂足為D(m,0),并與直線OA交于點C.

(1)求直線OA和二次函數(shù)的解析式;

(2)當(dāng)點P在直線OA的上方時,

①當(dāng)PC的長最大時,求點P的坐標(biāo);

②當(dāng)SPCO=SCDO時,求點P的坐標(biāo).

    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為4,∠DAB=60°,EBC的中點,在對角線AC上存在一點P,使PBE的周長最小,則PBE的周長的最小值為 (  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2m﹣1x+m2=0有兩個實數(shù)根x1x2

1)求實數(shù)m的取值范圍;

2)當(dāng)x12﹣x22=0時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種對正整數(shù)n的“F運算”:當(dāng)n為奇數(shù)時,結(jié)果為3n+5;當(dāng)n為偶數(shù)時,結(jié)果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運算重復(fù)進(jìn)行.例如:取n26,則運算過程如圖:

那么當(dāng)n26時,第2016次“F運算”的結(jié)果是_____

查看答案和解析>>

同步練習(xí)冊答案