精英家教網 > 初中數學 > 題目詳情

【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0(

A.沒有實根
B.只有一個實根
C.有兩個實根,且一根為正,一根為負
D.有兩個實根,且一根小于1,一根大于2

【答案】D
【解析】解:由圖可知:拋物線y=ax2+bx+c的圖象與x軸的交點橫坐標的取值范圍是0<x1<1,2<x2<3,
則一元二次方程ax2+bx+c=0有兩個實根,且一根小于1,一根大于2.
故選D.
【考點精析】解答此題的關鍵在于理解拋物線與坐標軸的交點的相關知識,掌握一元二次方程的解是其對應的二次函數的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,D、E為邊AB上的兩個點,且AE=AC,BD=BC,∠BCF=70°,則∠DCE=度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知有理數ab在數軸上的對應點如圖所示.

(1)已知a=–2.3,b=0.4,計算|a+b|–|a|–|1–b|的值;

(2)已知有理數a、b,計算|a+b|–|a|–|1–b|的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數,單位:kg)分成五組(A39.546.5;B46.553.5;C53.560.5;D60.567.5;E67.574.5),并依據統(tǒng)計數據繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:

1)這次抽樣調查的樣本容量是 ,并補全頻數分布直方圖;

2C組學生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是 度;

3)請你估計該校初三年級體重超過60kg的學生大約有多少名?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】通過類比聯想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例,請補充完整.

原題:如圖1,點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,

連接EF,則EF=BE+DF,試說明理由.

(1)思路梳理

∵AB=AD

∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合

∵∠ADC=∠B=90°

∴∠FDG=180°

點F、D、G共線

根據 ,易證△AFG≌ ,進而得EF=BE+DF.

(2)聯想拓展

如圖2,在△ABC中,∠BAC=90°,AB=AC,點D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應滿足的量關系,并寫出推理過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△OAB中,∠OAB=90°,OA=AB=6,將△OAB繞點O逆時針方向旋轉90°
得到△OA1B1

(1)線段A1B1的長是 , ∠AOA1的度數是;
(2)連結AA1 , 求證:四邊形OAA1B1是平行四邊形;
(3)求四邊形OAA1B1的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則一元二次方程ax2+bx+c=0(

A.沒有實根
B.只有一個實根
C.有兩個實根,且一根為正,一根為負
D.有兩個實根,且一根小于1,一根大于2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在同一平面內,△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點旋轉180°得到△CEA,將△ABD繞著邊AD的中點旋轉180°得到△DFA,如圖②,請完成下列問題:

(1)試猜想四邊形ABDF是什么特殊四邊形,并說明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知A是雙曲線y= (x>0)上一點,過點A作AB∥x軸,交雙曲線y=﹣ (x<0)于點B,若OA⊥OB,則 的值為(

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案