【題目】已知直線(xiàn)ABCD點(diǎn)M,N分別在直線(xiàn)ABCD,點(diǎn)E為平面內(nèi)一點(diǎn).

(1)如圖1,BME,E,END的數(shù)量關(guān)系為 (直接寫(xiě)出答案);

(2)如圖2,BME,EF平分∠MENNP平分∠END,EQNP,求∠FEQ的度數(shù)(用用含m的式子表示)

(3)如圖3點(diǎn)GCD上一點(diǎn),BMNEMN,GEKGEMEHMNAB于點(diǎn)H,探究∠GEKBMN,GEH之間的數(shù)量關(guān)系(用含n的式子表示)

【答案】1EBMEEND;(2;(3GEKBMNGEH

【解析】試題分析:(1)過(guò)點(diǎn)ElAB,利用平行線(xiàn)的性質(zhì)可得∠1=BME,2=DNE,由∠MEN=1+2,等量代換可得結(jié)論;(2)利用角平分線(xiàn)的性質(zhì)可得∠NEF=MEN,ENP=END,由EQNP,可得∠QEN=ENP=END,由(1)的結(jié)論可得∠MEN=BME+END,等量代換得出結(jié)論;(3)由已知可得∠EMN=BMN,GEM=GEK,由EHMN,可得∠HEM=ENM=BMN,因?yàn)椤?/span>GEH=GEM-HEM,等量代換得出結(jié)論.

試題解析:

(1)如圖1,過(guò)點(diǎn)El∥AB,

∵AB∥CD,

∴l(xiāng)∥AB∥CD,

∴∠1=∠BME,∠2=∠DNE,

∵∠MEN=∠1+∠2,

∴∠E=∠BME+∠END,

故答案為:∠E=∠BME+∠END;

(2)如圖2,

∵EF平分∠MEN,NP平分∠END,

∴∠NEF=MEN,ENP=END,

∵EQ∥NP,

∴∠QEN=ENP=END,

∵∠MEN=∠BME+∠END,

∴∠MEN-∠END=∠BME=m°,

∴∠FEQ=NEF-NEQ=MENEND= (MENEND)= m°;

(3)GEKBMNnGEH

如圖3,

∵∠BMN=n∠EMN,∠GEK=n∠GEK,

∴∠EMN=BMN,GEM=GEK,

∵EH∥MN,

∴∠HEM=ENM=BMN,

∵∠GEH=GEM-HEM=GEKBMN,

∴n∠GEH=∠GEK-∠BMN,

即∠GEKBMNnGEH

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線(xiàn)段AB的端點(diǎn)坐標(biāo)為A(2,-1),B(3,1).試畫(huà)出AB向左平移4個(gè)單位長(zhǎng)度的圖形,寫(xiě)出A、B對(duì)應(yīng)點(diǎn)CD的坐標(biāo),并判斷AB、C、D四點(diǎn)組成的四邊形的形狀.(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如今很多初中生購(gòu)買(mǎi)飲品飲用,既影響身體健康又給家庭增加不必要的開(kāi)銷(xiāo),為此數(shù)學(xué)興趣小組對(duì)本班同學(xué)一天飲用飲品的情況進(jìn)行了調(diào)查,大致可分為四種:

A:自帶白開(kāi)水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.

根據(jù)統(tǒng)計(jì)結(jié)果繪制如下兩個(gè)統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

1)這個(gè)班級(jí)有多少名同學(xué)?并補(bǔ)全條形統(tǒng)計(jì)圖.

2)若該班同學(xué)沒(méi)人每天只飲用一種飲品(每種僅限1瓶,價(jià)格如下表),則該班同學(xué)用于飲品上的人均花費(fèi)是多少元?

3)若我市約有初中生4萬(wàn)人,估計(jì)我市初中生每天用于飲品上的花費(fèi)是多少元?

4)為了養(yǎng)成良好的生活習(xí)慣,班主任決定在自帶白開(kāi)水的5名同學(xué)(男生2人,女生3人)中隨機(jī)抽取2名同學(xué)做良好習(xí)慣監(jiān)督員,請(qǐng)用列表法或樹(shù)狀圖法求出恰好抽到2名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在體育課上,對(duì)七年級(jí)男生進(jìn)行引體向上測(cè)試.以做4個(gè)為標(biāo)準(zhǔn),超過(guò)的個(gè)數(shù)記作正數(shù),不足的個(gè)數(shù)記作負(fù)數(shù)其中8名男生做引體向上的個(gè)數(shù)記錄如下:

+3

1

1

+3

1

0

+2

1

8名男生平均每人做了多少個(gè)引體向上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC∽△A`B`C`, ,邊上的中線(xiàn)CD=4cm,△ABC的周長(zhǎng)為20cm,△A`B`C`的面積是64 cm2,求:

(1)A`B`邊上的中線(xiàn)C`D`的長(zhǎng);

(2)△A`B`C`的周長(zhǎng)

(3)△ABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△DAC△EBC均是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN;④∠DAE=∠DBC.其中正確的有( )

A. ②④ B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸分別交于A(yíng)(﹣1,0),B(5,0)兩點(diǎn).

(1)求拋物線(xiàn)的解析式;

(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直X軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將RtACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線(xiàn)上時(shí),求m的值;

(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線(xiàn)上記為點(diǎn)E,點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn).試探究:在拋物線(xiàn)上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)點(diǎn)A(2,0)的兩條直線(xiàn)l1,l2分別交y軸于點(diǎn)B,C,其中點(diǎn)B在原點(diǎn)上方,點(diǎn)C在原點(diǎn)下方,已知AB=

(1)求點(diǎn)B的坐標(biāo);

(2)若△ABC的面積為4,求直線(xiàn)l2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式3x-210的解集是______

查看答案和解析>>

同步練習(xí)冊(cè)答案