【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C.動點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動.同時動點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動.點(diǎn)P,Q的運(yùn)動速度均為每秒1個單位.運(yùn)動時間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)過點(diǎn)E作EF⊥AD于F,交拋物線于點(diǎn)G,當(dāng)t為何值時,△ACG的面積最大?最大值為多少?
(3)在動點(diǎn)P,Q運(yùn)動的過程中,當(dāng)t為何值時,在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以C,Q,E,H為頂點(diǎn)的四邊形為菱形?請直接寫出t的值.
【答案】(1)A(1,4);y=﹣x2+2x+3;(2)當(dāng)t=2時,S△ACG的最大值為1;(3)t=20﹣8 或t= .
【解析】試題分析:(1)根據(jù)矩形的性質(zhì)可以寫出點(diǎn)A得到坐標(biāo);由頂點(diǎn)A的坐標(biāo)可設(shè)該拋物線的頂點(diǎn)式方程為y=a(x-1)2+4,然后將點(diǎn)C的坐標(biāo)代入,即可求得系數(shù)a的值(利用待定系數(shù)法求拋物線的解析式);(2)利用待定系數(shù)法求得直線AC的方程y=-2x+6;由圖形與坐標(biāo)變換可以求得點(diǎn)P的坐標(biāo)(1,4-t),據(jù)此可以求得點(diǎn)E的縱坐標(biāo),將其代入直線AC方程可以求得點(diǎn)E或點(diǎn)G的橫坐標(biāo);然后結(jié)合拋物線方程、圖形與坐標(biāo)變換可以求得GE=4-、點(diǎn)A到GE的距離為,C到GE的距離為2-;最后根據(jù)三角形的面積公式可以求得S△ACG=S△AEG+S△CEG=-(t-2)2+1,由二次函數(shù)的最值可以解得t=2時,S△ACG的最大值為1;(3)因?yàn)榱庑问青忂呄嗟鹊钠叫兴倪呅,所以點(diǎn)H在直線EF上.
試題解析:
(1)A(1,4).
由題意知,可設(shè)拋物線解析式為y=a(x1)2+4,
∵拋物線過點(diǎn)C(3,0),
∴0=a(31)2+4,
解得,a=1,
∴拋物線的解析式為y=(x1)2+4,即y=x2+2x+3.
(2)∵A(1,4),C(3,0),
∴可求直線AC的解析式為y=2x+6.
∵點(diǎn)P(1,4t).
∴將y=4t代入y=2x+6中,解得點(diǎn)E的橫坐標(biāo)為x=1+.
∴點(diǎn)G的橫坐標(biāo)為1+,代入拋物線的解析式中,可求點(diǎn)G的縱坐標(biāo)為4.
∴GE=(4)(4t)=t.
又∵點(diǎn)A到GE的距離為,C到GE的距離為2,
即S△ACG=S△AEG+S△CEG=EG+EG(2)
=2(t)= (t2)2+1.
當(dāng)t=2時,S△ACG的最大值為1.
(3)第一種情況如圖1所示,點(diǎn)H在AC的上方,由四邊形CQEH是菱形知CQ=CE=t,
根據(jù)△APE∽△ABC,知
,即,解得t=20;
第二種情況如圖2所示,
點(diǎn)H在AC的下方,由四邊形CQHE是菱形知CQ=QE=EH=HC=t,PE=t,EM=2t,MQ=42t.
則在直角三角形EMQ中,根據(jù)勾股定理知EM2+MQ2=EQ2,即(2t)2+(42t)2=t2,
解得,t1=,t2=4(不合題意,舍去).
綜上所述,t=20或t=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,,BD平分∠ABC,BC上有動點(diǎn)P.
(1)DP⊥BC時(如圖1),求證:;
(2)DP平分∠BDC時(如圖2),BD、CD、CP三者有何數(shù)量關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】材料1:一般地,個相同因數(shù)相乘:記為.如,此時,3叫做以2為底的8的對數(shù),記為(即)
(1)計(jì)算__________,__________.
材料2:新規(guī)定一種運(yùn)算法則:自然數(shù)1到的連乘積用表示,例如:,,,,…在這種規(guī)定下
(2)求出滿足該等式的:
(3)當(dāng)為何值時,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】D、E分別是不等邊三角形ABC(即AB≠BC≠AC)的邊AB、AC的中點(diǎn).O是△ABC所在平面上的動點(diǎn),連接OB、OC,點(diǎn)G、F分別是OB、OC的中點(diǎn),順次連接點(diǎn)D、G、F、E.
(1)如圖,當(dāng)點(diǎn)O在△ABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;
(2)若四邊形DGFE是菱形,則OA與BC應(yīng)滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,AB的垂直平分線交線段AC于D,若△ABC和△DBC的周長分別是60 cm和38 cm,則△ABC的腰長和底邊BC的長分別是( )
A. 22cm和16cmB. 16cm和22cm
C. 20cm和16cmD. 24cm和12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為AD邊上的一點(diǎn),過C點(diǎn)作CF⊥CE交AB的延長線于點(diǎn)F.
(1)求證:△CDE∽△CBF;
(2)若B為AF的中點(diǎn),CB=3,DE=1,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)B的坐標(biāo)為(1,0)
(1)在圖l中畫出△ABC關(guān)于x軸對稱的△A1B1C1;
(2)在圖2中,以點(diǎn)O為位似中心,將△ABC放大,使放大后的△A2B2C2與△ABC的對應(yīng)邊的比為2:1(畫出一種即可). 直接寫出點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+4ax+4a-4(a≠0)的頂點(diǎn)為A.
(1)求頂點(diǎn)A的坐標(biāo);
(2)過點(diǎn)(0,5)且平行于x軸的直線l,與拋物線y=ax2+4ax+4a-4(a≠0)交于B、C兩點(diǎn).
①當(dāng)a=1時,求線段BC的長;
②當(dāng)線段BC的長不小于8時,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜免賽跑”的故事同學(xué)們都非常熱悉,圖中的線段OD和折線OABC表示“龜兔賽跑時路程與時間的關(guān)系,請你根據(jù)圖中給出的信息,解決下列問題.
(1)填空:折線OABC表示賽跑過程中_______(填“兔子”或“烏龜”)的路程與時間的關(guān)系,賽跑的全過程是___________米.
(2)兔子在起初每分鐘跑多少米?烏龜每分鐘爬多少米?
(3)烏龜用了多少分鐘追上了正在睡覺的兔子?
(4)兔子醒來假,以400米/分的速度跑向終點(diǎn),結(jié)果還是比烏龜晚到了0.5分鐘,請你算算兔子中間停下睡覺用了多少分鐘.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com