【題目】如圖①是被譽為“川北第一樓”的鳳凰樓,它不僅是廣元市的城標(biāo),更是一份承傳文化的載體.李銘和王華同學(xué)想借助無人機測量鳳凰樓的高度,如圖②為測量示意圖,他們站在坡度是,坡面長為的斜坡的坡底處操控?zé)o人機,無人機從坡頂出發(fā),以的速度,沿仰角的方向爬升,時到達(dá)空中的處.
(1)求此時無人機離坡底所在地面的高度;
(2)如圖②,無人機在處測得鳳凰樓頂部的仰角為,底部的俯角為(鳳凰樓與李銘和王華所站坡底在同一水平面),求鳳凰樓的高度.
(結(jié)果精確到;參考數(shù)據(jù):,,,)
圖①圖②
【答案】(1)10.5 m;(2)42.0 m
【解析】
(1)過點B作BD⊥CD于點D,過點A作AE⊥CD于點E,交點B所在水平線于點G,構(gòu)造直角三角形,得到∠BCD=60°,可推出GE=BD=BC·sin60°,利用Rt△AGB求出AG,即可得到結(jié)果.
(2)過點A作AF⊥MN構(gòu)造直角三角形,得到AF=,在Rt△AFM中,∠FAM=60°,可得到FM=AF·tan60°=3FN,所以MN=FN+FM即可得到結(jié)果.
解:(1)如圖,過點B作BD⊥CD于點D,過點A作AE⊥CD于點E,交點B所在水平線于點G.
∵i=tan∠BCD=,
∴∠BCD=60°.
∵BC=4,
∴GE=BD=BC·sin60°=.
∵AB=0.3×38=11.4,
在Rt△AGB中,AG=AB·sin38°≈7.068.
∴AE=AG+GE=7.068+≈10.5(m).
答:此時無人機離坡底C所在地面的高度約為10.5 m.
(2)如圖,過點A作AF⊥MN于點F.
在Rt△AFN中,∠FAN=30°,
∴AF=.
在Rt△AFM中,∠FAM=60°,
∴FM=AF·tan60°=3FN.
∴MN=FN+FM=4FN=4AE≈42.0(m).
答:鳳凰樓的高度MN約為42.0 m.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③,3a+c>0;④當(dāng)x>﹣1時,y的值隨x值的增大而增大.⑤(m為任意實數(shù))其中正確的結(jié)論有_____.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,管中放置著三根同樣的繩子AA1、BB1、CC1;
(1)小明從這三根繩子中隨機選一根,恰好選中繩子AA1的概率是多少?
(2)小明先從左端A、B、C三個繩頭中隨機選兩個打一個結(jié),再從右端A1、B1、C1三個繩頭中隨機選兩個打一個結(jié),求這三根繩子能連結(jié)成一根長繩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M,N是以AB為直徑的⊙O上的點,且=,弦MN交AB于點C,BM平分∠ABD,MF⊥BD于點F.
(1)求證:MF是⊙O的切線;
(2)若CN=3,BN=4,求CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“某市為處理污水,需要鋪設(shè)一條長為4000米的管道,為了盡量減少施工對交通所造成的影響,實際施工時×××××.設(shè)原計劃每天鋪設(shè)管道x米,則可得方程.”根據(jù)此情境,題中用“×××××”表示得缺失的條件,應(yīng)補為( )
A.每天比原計劃多鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)
B.每天比原計劃少鋪設(shè)10米,結(jié)果延期20天才完成任務(wù)
C.每天比原計劃多鋪設(shè)10米,結(jié)果提前20天完成任務(wù)
D.每天比原計劃少鋪設(shè)10米,結(jié)果提前20天完成任務(wù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角中,,, ,將繞點按逆時針方向旋轉(zhuǎn),得到.(1)如圖1,當(dāng)點在線段的延長線上時,則的度數(shù)為______________度;(2)如圖2,點為線段中點,點是線段上的動點,在繞點按逆時針方向旋轉(zhuǎn)過程中,點的對應(yīng)點是點,則線段長度最小值是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1、O2 、O3…組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2020秒時,點P的坐標(biāo)是__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=60°,AC=1,D是邊AB的中點,E是邊BC上一點,若DE平分△ABC的周長,則DE的長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于點D,DE⊥AB,垂足為E。若DE=1,則BC的長為( )
A.2+B.C.D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com