【題目】如圖,直線AB、CD相交于點(diǎn)O,OE平分∠BOD.
(1)若∠AOC=70°,∠DOF=90°,求∠EOF的度數(shù);
(2)若OF平分∠COE,∠BOF=15°,若設(shè)∠AOE=x°.
①用含x的代數(shù)式表示∠EOF;
②求∠AOC的度數(shù).
【答案】(1)55°(2)①x②100°
【解析】
(1)由對(duì)頂角的性質(zhì)可知∠BOD=70°,從而可求得∠FOB=20°,由角平分線的定義可知∠BOE=∠BOD,最后根據(jù)∠EOF=∠BOE+∠FOB求解即可;
(2)①先證明∠AOE=∠COE= x°,然后由角平分線的定義可知∠FOE=x°;
②∠BOE=∠FOE-∠FOB可知∠BOE=x°-15°,最后根據(jù)∠BOE+∠AOE=180°列出方程可求得x的值,從而可求得∠AOC的度數(shù).
解:(1)由對(duì)頂角相等可知:∠BOD=∠AOC=70°,
∵∠FOB=∠DOF-∠BOD,
∴∠FOB=90°-70°=20°,
∵OE平分∠BOD,
∴∠BOE=∠BOD=×70°=35°,
∴∠EOF=∠FOB+∠BOE=35°+20°=55°;
(2)①∵OE平分∠BOD,
∴∠BOE=∠DOE,
∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,
∴∠COE=∠AOE=x°,
∵OF平分∠COE,
∴∠EOF=x°;
②∵∠BOE=∠FOE-∠FOB,
∴∠BOE=x°-15°,
∵∠BOE+∠AOE=180°,
∴x°-15°+x°=180°,解得:x=130,
∴∠AOC=2∠BOE=2×(180°-130°)=100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東東玩具商店用500元購(gòu)進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購(gòu)進(jìn)第二批這種悠悠球,所購(gòu)數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了5元.
(1)求第一批悠悠球每套的進(jìn)價(jià)是多少元;
(2)如果這兩批悠悠球每套售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每套悠悠球的售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①是一個(gè)長(zhǎng)為、寬為的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)圖②中的陰影部分的面積為
(2)觀察圖②,請(qǐng)你寫出代數(shù)式與之間的等量關(guān)系式
(3)若則
(4)實(shí)際上有許多代數(shù)恒等式可以用圖形的面積來(lái)表示.如圖③,它表示
(5)試畫出一個(gè)幾何圖形,使它的面積能表示
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ 內(nèi)接于⊙O,過(guò)點(diǎn)B作⊙O的切線DE,F(xiàn)為射線BD上一點(diǎn),連接CF
(1)求證: ;
(2)若⊙O 的直徑為5, , ,求 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y= x+3的圖象與x軸和y軸交于A、B兩點(diǎn),將△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得到△A′OB′.
(1)求直線A′B′的解析式;
(2)若直線A′B′與直線AB相交于點(diǎn)C,求S△ABC:S△ABO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)P,根據(jù)下列條件,求∠BPC的度數(shù).
(1)若∠ABC=50°,∠ACB=60°,則∠BPC= ;
(2)若∠ABC+∠ACB=120°,則∠BPC= ;
(3)若∠A=80°,則∠BPC= ;
(4)從以上的計(jì)算中,你能發(fā)現(xiàn)已知∠A,求∠BPC的公式是:∠BPC= (提示:用∠A表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線AM∥BN,點(diǎn)E,F,D在射線AM上,點(diǎn)C在射線BN上,且∠BCD=∠A,BE平分∠ABF,BD平分∠FBC.
(1)求證:AB∥CD.
(2)如果平行移動(dòng)CD,那么∠AFB與∠ADB的比值是否發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這兩個(gè)角的比值.
(3)如果∠A=100°,那么在平行移動(dòng)CD的過(guò)程中,是否存在某一時(shí)刻,使∠AEB=∠BDC?若存在,求出此時(shí)∠AEB的度數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為節(jié)約能源,某單位按以下規(guī)定收取每月電費(fèi):用電不超過(guò)140度,按每度元收費(fèi),如果超過(guò)140度,超過(guò)部分按每度元收費(fèi).
若某住戶六月份的用電量是130度,該用戶六月份應(yīng)繳多少電費(fèi)?
若該住戶七月份的用電量是200度,該用戶七月份應(yīng)繳多少電費(fèi)?
若某住戶十月份的用電量是a度,該用戶十月份應(yīng)繳多少電費(fèi)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com