【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點(diǎn)D是BC上一動(dòng)點(diǎn),連接AD,將△ACD沿AD折疊,點(diǎn)C落在點(diǎn)E處,連接DE交AB于點(diǎn)F,當(dāng)△DEB是直角三角形時(shí),DF的長(zhǎng)為 .
【答案】 或
【解析】解:如圖1所示;點(diǎn)E與點(diǎn)F重合時(shí).
在Rt△ABC中,BC= = =4.
由翻折的性質(zhì)可知;AE=AC=3、DC=DE.則EB=2.
設(shè)DC=ED=x,則BD=4﹣x.
在Rt△DBE中,DE2+BE2=DB2 , 即x2+22=(4﹣x)2 .
解得:x= .
∴DE= .
如圖2所示:∠EDB=90時(shí).
由翻折的性質(zhì)可知:AC=AE,∠C=∠AED=90°.
∵∠C=∠AED=∠CDE=90°,
∴四邊形ACDE為矩形.
又∵AC=AE,
∴四邊形ACE′為正方形.
∴CD=AC=3.
∴DB=BC﹣DC=4﹣3=1.
∵DF∥AC,
∴△BDF∽△BCA.
∴ = ,即 .
解得:DF= .
點(diǎn)D在CB上運(yùn)動(dòng),∠DBC′<90°,故∠DBC′不可能為直角.
所以答案是: 或 .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)翻折變換(折疊問題)的理解,了解折疊是一種對(duì)稱變換,它屬于軸對(duì)稱,對(duì)稱軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某自行車經(jīng)銷商計(jì)劃投入7.1萬(wàn)元購(gòu)進(jìn)100輛A型和30輛B型自行車,其中B型車單價(jià)是A型車單價(jià)的6倍少60元.
(1)求A、B兩種型號(hào)的自行車單價(jià)分別是多少元?
(2)后來(lái)由于該經(jīng)銷商資金緊張,投入購(gòu)車的資金不超過(guò)5.86萬(wàn)元,但購(gòu)進(jìn)這批自行年的總數(shù)不變,那么至多能購(gòu)進(jìn)B型車多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)25米長(zhǎng)的梯子AB,斜靠在一豎直的墻AO上,這時(shí)的AO距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B也外移4米,對(duì)嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列解答過(guò)程:如圖甲,AB∥CD,探索∠P與∠A,∠C之間的關(guān)系.
解:過(guò)點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠P與∠A,∠C之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn), .將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn)得,連接.
(1)求證: 是等邊三角形;
(2)當(dāng)時(shí),試判斷的形狀,并說(shuō)明理由;
(3)探究:當(dāng)為多少度時(shí), 是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)廣場(chǎng)上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測(cè)量了旗桿的高度.如圖2,某一時(shí)刻,旗桿AB的影子一部分落在平臺(tái)上,另一部分落在斜坡上,測(cè)得落在平臺(tái)上的影長(zhǎng)BC為4米,落在斜坡上的影長(zhǎng)CD為3米,AB⊥BC,同一時(shí)刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長(zhǎng)QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y= x2+bx+c與y軸交于點(diǎn)C(0,﹣4),與x軸交于點(diǎn)A、B,且B點(diǎn)的坐標(biāo)為(2,0).
(1)求拋物線的解析式;
(2)若點(diǎn)P是AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PE∥AC交BC于點(diǎn)E,連接CP,求△PCE面積最大時(shí)P點(diǎn)的坐標(biāo);
(3)在(2)的條件下,若點(diǎn)D為OA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),當(dāng)△OMD為等腰三角形時(shí),連接MP、ME,把△MPE沿著PE翻折,點(diǎn)M的對(duì)應(yīng)點(diǎn)為點(diǎn)N,直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則cos∠EFG的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年某區(qū)為綠化行車道,計(jì)劃購(gòu)買甲、乙兩種樹苗共計(jì)n棵.設(shè)購(gòu)買甲種樹苗x棵,有關(guān)甲、乙兩種樹苗的信息如圖所示.
(1)當(dāng)n=500時(shí),
①根據(jù)信息填表(用含x的式子表示);
樹苗類型 | 甲種樹苗 | 乙種樹苗 |
購(gòu)買樹苗數(shù)量(單位:棵) | x | |
購(gòu)買樹苗的總費(fèi)用(單位:元) |
②如果購(gòu)買甲、乙兩種樹苗共用去25 600元,那么甲、乙兩種樹苗各購(gòu)買了多少棵?
(2)要使這批樹苗的成活率不低于92%,且使購(gòu)買這兩種樹苗的總費(fèi)用為26 000元,求n的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com