【題目】如圖,點(diǎn)Px軸正半軸上的一個(gè)點(diǎn),過(guò)點(diǎn)Px軸的垂線,交函數(shù)的圖象于點(diǎn)A,交函數(shù)的圖象于點(diǎn)B,過(guò)點(diǎn)Bx軸的平行線,交于點(diǎn)C,邊接AC.

(1)當(dāng)點(diǎn)P的坐標(biāo)為(1,0)時(shí),求ABC的面積;

(2)當(dāng)點(diǎn)P的坐標(biāo)為(1,0)時(shí),在y軸上是否存在一點(diǎn)Q,使A、O、Q三點(diǎn)為頂點(diǎn)的三角形QAO為等腰三角形?若存在,請(qǐng)直接寫出Q點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

(3)請(qǐng)你連接OAOC.當(dāng)點(diǎn)P的坐標(biāo)為(t,0)時(shí),OAC的面積是否隨t的值的變化而變化?請(qǐng)說(shuō)明理由.

【答案】(1);(2)則Q的坐標(biāo)為(0,﹣),(0,),(0,2)(0,1);

3)見解析.

【解析】

(1)根據(jù)P點(diǎn)坐標(biāo)先求出A,B兩點(diǎn)坐標(biāo),然后求出C點(diǎn)坐標(biāo),得到AB=3,BC=,再利用三角形面積公式求解即可;

(2)如圖,先求得OA=,再分OA=OQ,AQ=AO,QO=QA三種情況,分別求出Q點(diǎn)坐標(biāo)即可;

(3)如圖過(guò)點(diǎn)CCE⊥x軸于點(diǎn)E,CD⊥y軸于點(diǎn)D,因?yàn)辄c(diǎn)P的坐標(biāo)為(t,0),所以點(diǎn)A的坐標(biāo)為(t,),點(diǎn)B(t,),點(diǎn)C(,),由圖可知SOAC=S矩形CDOE+S梯形APEC﹣SOCD﹣SOAP,進(jìn)而可得到關(guān)于t的方程,然后解方程即可.

解:(1)當(dāng)點(diǎn)P的坐標(biāo)為(1,0)時(shí),點(diǎn)A、B的橫坐標(biāo)為1,

點(diǎn)A在反比例函數(shù)y=上,點(diǎn)B在反比例函數(shù)y=上,

點(diǎn)A(1,1),點(diǎn)B(1,4),

∵BCx軸,

點(diǎn)C的縱坐標(biāo)為4,

點(diǎn)Cy=上,

點(diǎn)C的坐標(biāo)為(,4),

∴AB=3,BC=

∴SABC=×BC×AB=;

(2)如圖所示:OA==,

OA=OQ,點(diǎn)Q位于Q1Q2位置,此時(shí)Q1(0,﹣),Q2(0,);

AQ=AO,點(diǎn)Q位于Q3位置,此時(shí)Q3(0,2);

QO=QA,點(diǎn)Q位于Q4位置,此時(shí)Q4(0,1);

Q的坐標(biāo)為(0,﹣),(0,),(0,2)(0,1);

(3)過(guò)點(diǎn)CCE⊥x軸于點(diǎn)E,CD⊥y軸于點(diǎn)D,如圖所示:

點(diǎn)P的坐標(biāo)為(t,0),

點(diǎn)A的坐標(biāo)為(t,),點(diǎn)B(t,),點(diǎn)C(),

∴SOAC=S矩形CDOE+S梯形APEC﹣SOCD﹣SOAP=1++)×(t﹣)﹣=

△OAC的面積不隨t的值的變化而變化.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P⊙O的直徑AB的延長(zhǎng)線上,PC⊙O的切線,點(diǎn)C為切點(diǎn),連接AC,過(guò)點(diǎn)APC的垂線,點(diǎn)D為垂足,AD⊙O于點(diǎn)E.

(1)如圖1,求證:∠DAC=∠PAC;

(2)如圖2,點(diǎn)F(與點(diǎn)C位于直徑AB兩側(cè))在⊙O上,,連接EF,過(guò)點(diǎn)FAD的平行線交PC于點(diǎn)G,求證:FG=DE+DG;

(3)(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,AE是角平分線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過(guò)B、M兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.

(1)判斷AE與⊙O的位置關(guān)系,并說(shuō)明理由;

(2)若BC=6,AC=4CE時(shí),求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)A(8,0)、B(08)兩點(diǎn)的直線y1與直線y2x+2交于點(diǎn)C.直線y2x軸、y軸分別交于點(diǎn)D和點(diǎn)E.

(1)動(dòng)點(diǎn)MA點(diǎn)出發(fā)沿AB運(yùn)動(dòng),運(yùn)動(dòng)的速度是每秒1個(gè)單位長(zhǎng)度:當(dāng)點(diǎn)M運(yùn)動(dòng)到B點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)M運(yùn)動(dòng)時(shí)間為t秒,△ADM的面積為S,求St的函數(shù)關(guān)系式.

(2)y軸上是否存在點(diǎn)P,使△ACP為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,6),點(diǎn)B的坐標(biāo)是(6,0).

(1)如圖1,點(diǎn)C的坐標(biāo)是(﹣2,0),BDACDy軸于點(diǎn)E.求點(diǎn)E的坐標(biāo);

(2)在(1)的條件下求證:OD平分∠CDB

(3)如圖2,點(diǎn)FAB中點(diǎn),點(diǎn)Gx正半軸點(diǎn)B右側(cè)一動(dòng)點(diǎn),過(guò)點(diǎn)FFG的垂線FH,交y軸的負(fù)半軸于點(diǎn)H,那么當(dāng)點(diǎn)G的位置不斷變化時(shí),SAFHSFBG的值是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變化,請(qǐng)求出相應(yīng)結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩輛汽車同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時(shí)間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時(shí)后,兩車相距多少千米?

(5)行駛多長(zhǎng)時(shí)間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一位籃球運(yùn)動(dòng)員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運(yùn)動(dòng),當(dāng)球運(yùn)動(dòng)的水平距離為2.5m時(shí),達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說(shuō)法正確的是( 。

A. 此拋物線的解析式是y=﹣x2+3.5

B. 籃圈中心的坐標(biāo)是(4,3.05)

C. 此拋物線的頂點(diǎn)坐標(biāo)是(3.5,0)

D. 籃球出手時(shí)離地面的高度是2m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:RtABC,C=90°,ABC=30°.

(1)探究應(yīng)用1:如圖1,RtABC,C=90°,ABC=30°,點(diǎn)D在線段CB上,以AD為邊作等邊△ADE,連接BE,為探究線段BEDE之間的數(shù)量關(guān)系,組長(zhǎng)已經(jīng)添加了輔助線:取AB的中點(diǎn)F,連接EF.線段BEDE之間的數(shù)量關(guān)系是_________,并說(shuō)明理由;

(2)探究應(yīng)用2:如圖2,RtABC,C=90°,ABC=30°,點(diǎn)D在線段CB的延長(zhǎng)線上,以AD為邊作等邊△ADE,連接BE.線段BEDE之間的數(shù)量關(guān)系是__________,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,ABAC,BCA=65°,作CDAB,并與O相交于點(diǎn)D連接BD,則∠DBC的大小為

A. 15° B. 35° C. 25° D. 45°

查看答案和解析>>

同步練習(xí)冊(cè)答案