13.如圖,AB是半圓O的直徑,CD⊥AB于點C,交半圓于點E,DF切半圓于點F,已知$∠AEF=135°,OC=CE,BF=2\sqrt{2}$,求DE的長.

分析 首先證明四邊形CODF是矩形,△BOF是等腰直角三角形,求出CD、CE即可解決問題.

解答 解:如圖,連接OE、OF.

∵∠AEF+∠B=180°,∠AEF=135°,
∴∠B=45°,
∴∠AOF=2∠B=90°,
∴∠B=∠OFB=45°,
∴OF=OB,∵BF=2$\sqrt{2}$,
∴OF=OB=2,
∵DF是切線,
∴DF⊥OF,
∴∠DFO=90°,
∴DC⊥AB,
∴∠DCO=∠COF=∠DFO=90°,
∴四邊形OCDF是矩形,
∴DC=OF=2,
∵CE=CO,EO=2,
∴CE=CO=$\sqrt{2}$,
∴DE=DC-CE=2-$\sqrt{2}$.

點評 本題考查切線的性質(zhì)、勾股定理.垂徑定理等知識,解題的關(guān)鍵是靈活運用這些知識解決問題,尋找特殊三角形或特殊四邊形是解題的突破口,屬于中考常考題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知線段AB=18米,MA⊥AB于點A,MA=6米,射線BD⊥AB于B,P點從B點向A運動,每秒走1米,Q點從B點向D運動,每秒走2米,P、Q同時從B出發(fā),則出發(fā)x秒后,在線段MA上有一點C,使△CAP與△PBQ全等,則x的值為( 。
A.4B.6C.4或9D.6或9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.等腰三角形兩邊長分別是5cm和12cm,則這個三角形的周長為(  )
A.17cmB.22cm或29cmC.22cmD.29cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.在數(shù)學(xué)活動課上,老師和同學(xué)們判斷一個四邊形門框是否為矩形,下面是某合作學(xué)習(xí)小組的4位同學(xué)擬定的方案,其中正確的是( 。
A.測量對角線,看是否互相平分
B.測量兩組對邊,看是否分別相等
C.測量對角線,看是否相等
D.測量對角線的交點到四個頂點的距離,看是否都相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

8.四邊形的內(nèi)角和的度數(shù)為360°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.如圖,已知∠BAC=∠DAC,若添加一個條件使△ABC≌△ADC,則添加錯誤的是( 。
A.AB=ADB.∠B=∠DC.∠BCA=∠DCAD.BC=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.計算:$\sqrt{(-1)^{2}}$+$\root{3}{-27}$+|$\sqrt{3}-2$|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.某扇形的弧長為2π,圓心角為90°,此扇形的面積為4π.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在平行四邊形ABCD中,∠A=40°,則∠C大小為( 。
A.40°B.80°C.140°D.180°

查看答案和解析>>

同步練習(xí)冊答案