【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.

(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA=,求BH的長。

【答案】
(1)

證明:∵∠ODB=∠AEC,∠AEC=∠ABC,

∴∠ODB=∠ABC,

∵OF⊥BC,

∴∠BFD=90°,

∴∠ODB+∠DBF=90°,

∴∠ABC+∠DBF=90°,

即∠OBD=90°,

∴BD⊥OB,

∴BD是⊙O的切線;


(2)

證明:連接AC,如圖1所示:

∵OF⊥BC,

,

∴∠CAE=∠ECB,

∵∠CEA=∠HEC,

∴△CEH∽△AEC,

,

∴CE2=EHEA;


(3)

解:連接BE,如圖2所示:

∵AB是⊙O的直徑,

∴∠AEB=90°,

∵⊙O的半徑為5,sin∠BAE=,

∴AB=10,BE=ABsin∠BAE=10×=6,

∴EA===8,

,

∴BE=CE=6,

∵CE2=EHEA,

∴EH==,

在Rt△BEH中,BH===


【解析】(1)由圓周角定理和已知條件證出∠ODB=∠ABC,再證出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切線;
(2)連接AC,由垂徑定理得出 , 得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,證明△CEH∽△AEC,得出對應邊成比例,即可得出結論;
(3)連接BE,由圓周角定理得出∠AEB=90°,由三角函數(shù)求出BE,再根據(jù)勾股定理求出EA,得出BE=CE=6,由(2)的結論求出EH,然后根據(jù)勾股定理求出BH即可.
此題考查了圓的綜合應用,涉及知識點有圓周角定理,切線判定,垂徑定理,,三角函數(shù),相似三角形對應邊成比例以及勾股定理等,做題時要綜合應用以上知識點才能完整解決此題。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=﹣ x+1與x軸、y軸分別相交于點A、B,將△AOB沿直線AB翻折,點O落在點O′處,則點O′的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=x2+bx+c的頂點為P,與y軸交于點A,與直線OP交于點B.
(1)如圖1,若點P的橫坐標為1,點B的坐標為(3,6),試確定拋物線的解析式;

(2)在(1)的條件下,若點M是直線AB下方拋物線上的一點,且SABM=3,求點M的坐標;
(3)如圖2,若點P在第一象限,且PA=PO,過點P作PD⊥x軸于點D.將拋物線y=x2+bx+c平移,平移后的拋物線經(jīng)過點A、D,該拋物線與x軸的另一個交點為C,請?zhí)骄克倪呅蜲ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我市開展“五城聯(lián)創(chuàng)”活動中,某工程隊承擔了某小區(qū)900米長的污水管道改造任務.工程隊在改造完360米管道后,引進了新設備,每天的工作效率比原來提高了20%,結果共用27天完成了任務,問引進新設備前工程隊每天改造管道多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次800米的長跑比賽中,甲、乙兩人所跑的路程s(米)與各自所用時間t(秒)之間的函數(shù)圖象分別為線段OA和折線OBCD,則下列說法正確的是( 。

A.甲的速度隨時間的增加而增大
B.乙的平均速度比甲的平均速度大
C.在起跑后第180秒時,兩人相遇
D.在起跑后第50秒時,乙在甲的前面

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一食堂需要購買盒子存放食物,盒子有A,B兩種型號,單個盒子的容量和價格如表.現(xiàn)有15升食物需要存放且要求每個盒子要裝滿,由于A型號盒子正做促銷活動:購買三個及三個以上可一次性返還現(xiàn)金4元,則購買盒子所需要最少費用為 元.

型號

A

B

單個盒子容量(升)

2

3

單價(元)

5

6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△AOB中,C,D分別是OA,OB邊上的點,將△OCD繞點O順時針旋轉(zhuǎn)到△OC′D′.

(1)如圖1,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點,證明:①AC′=BD′;②AC′⊥BD′;
(2)如圖2,若△AOB為任意三角形且∠AOB=θ,CD∥AB,AC′與BD′交于點E,猜想∠AEB=θ是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線y=﹣x+3與x軸、y軸分別交于A、B,在△AOB內(nèi)部作正方形,使正方形的四個頂點都落在該三角形的邊上,求正方形落在x軸正半軸的頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,連接BD,先以D為圓心,DA為半徑作弧AC,再以D為圓心,DB為半徑作弧BE,且D、C、E三點共線,則圖中兩個陰影部分的面積之和是(
A. π
B. +1
C.π
D.π+1

查看答案和解析>>

同步練習冊答案