【題目】如圖,正方形ABCD的邊長為2,連接BD,先以D為圓心,DA為半徑作弧AC,再以D為圓心,DB為半徑作弧BE,且D、C、E三點共線,則圖中兩個陰影部分的面積之和是(
A. π
B. +1
C.π
D.π+1

【答案】A
【解析】解:∵AB=2, ∴BD=2 ,
S陰影=S扇形BDE S扇形ACD= × =π﹣ π= π,
故選A.
【考點精析】關(guān)于本題考查的正方形的性質(zhì)和扇形面積計算公式,需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.

(1)求證:BD是⊙O的切線;
(2)求證:CE2=EHEA;
(3)若⊙O的半徑為5,sinA=,求BH的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,AD=3,點P是AB邊上一點(不與A,B重合),連接CP,過點P作PQ⊥CP交AD邊于點Q,連接CQ.

(1)當(dāng)△CDQ≌△CPQ時,求AQ的長;
(2)取CQ的中點M,連接MD,MP,若MD⊥MP,求AQ的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,AD為弦,∠DBC=∠A.

(1)求證:BC是⊙O的切線;
(2)連接OC,如果OC恰好經(jīng)過弦BD的中點E,且tanC=,AD=3,求直徑AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青少年“心理健康”問題越來越引起社會的關(guān)注,某中學(xué)為了了解學(xué)校600名學(xué)生的心理健康狀況,舉行了一次“心理健康”知識測試,并隨即抽取了部分學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本,繪制了下面未完成的頻率分布表和頻率分布直方圖.請回答下列問題:

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

14

0.28

70.5~80.5

16

80.5~90.5

90.5~100.5

10

0.20

合計

1.00


(1)填寫頻率分布表中的空格,并補(bǔ)全頻率分布直方圖;
(2)若成績在70分以上(不含70分)為心理健康狀況良好,同時,若心理健康狀況良好的人數(shù)占總?cè)藬?shù)的70%以上,就表示該校學(xué)生的心理健康狀況正常,否則就需要加強(qiáng)心里輔導(dǎo).請根據(jù)上述數(shù)據(jù)分析該校學(xué)生是否需要加強(qiáng)心里輔導(dǎo),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校初三學(xué)生體能水平,體育老師從剛結(jié)束的“女生800米,男生1000米”體能測試成績中隨機(jī)抽取了一部分同學(xué)的成績,按照“優(yōu)秀、良好、合格、不合格”進(jìn)行了統(tǒng)計,并繪制了下列不完整的統(tǒng)計圖,

請根據(jù)圖中信息解答下列問題:
(1)體育老師總共選取了多少人的成績?扇形統(tǒng)計圖中“優(yōu)秀”部分的圓心角度數(shù)是多少?
(2)把條形統(tǒng)計圖補(bǔ)充完整;
(3)已知某校初三在校生有2500人,從統(tǒng)計情況分析,請你估算此次體能測試中達(dá)到“優(yōu)秀”水平的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點B,與OA交于點P,且OA2﹣AB2=18,則點P的橫坐標(biāo)為(
A.9
B.6
C.3
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B、C、D均在⊙O上,F(xiàn)B與⊙O相切于點B,AB與CF交于點G,OA⊥CF于點E,AC∥BF.
(1)求證:FG=FB.
(2)若tan∠F= ,⊙O的半徑為4,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊直角三角板,且∠C=90°,∠A=30°,現(xiàn)將圓心為點O的圓形紙片放置在三角板內(nèi)部.

(1)如圖①,當(dāng)圓形紙片與兩直角邊AC、BC都相切時,試用直尺與圓規(guī)作出射線CO;(不寫作法與證明,保留作圖痕跡)
(2)如圖②,將圓形紙片沿著三角板的內(nèi)部邊緣滾動1周,回到起點位置時停止,若BC=9,圓形紙片的半徑為2,求圓心O運(yùn)動的路徑長.

查看答案和解析>>

同步練習(xí)冊答案