精英家教網 > 初中數學 > 題目詳情
已知拋物線y=ax2+bx+c經過點(1,2)與(-1,4),則a+c的值是   
【答案】分析:本題有a、b、c三個待定系數,已知兩點坐標,不能直接求出a、b、c的值;把已知兩點的坐標代入解析式,可得兩個關系式,觀察兩個式子的特點,相加可求a+c的值.
解答:解:已知拋物線y=ax2+bx+c經過點(1,2)與(-1,4),
將x=1,代入函數式可得y=a+b+c=2;
將x=-1,代入函數式可得y=a-b+c=4;
將兩個代數式相加可得:a+c=3.
點評:解決此類問題,首先將點的坐標代入函數式,得到關于系數的代數式,進行加減運算,湊成要求的形式,即可得出答案.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)經過A(-2,0),B(0,-4),C(2,-4)三點,且精英家教網與x軸的另一個交點為E.
(1)求拋物線的解析式;
(2)用配方法求拋物線的頂點D的坐標和對稱軸;
(3)求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知拋物線y=ax2和直線y=kx的交點是P(-1,2),則a=
 
,k=
 

查看答案和解析>>

科目:初中數學 來源: 題型:

2、已知拋物線y=ax2+bx+c的開口向下,頂點坐標為(2,-3),那么該拋物線有(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知拋物線y=ax2+bx+c(其中b>0,c<0)的頂點P在x軸上,與y軸交于點Q,過坐標原點O,作OA⊥PQ,垂足為A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求拋物線的解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點A(1,0),頂點為B,且拋物線不經過第三象限.
(1)使用a、c表示b;
(2)判斷點B所在象限,并說明理由;
(3)若直線y2=2x+m經過點B,且于該拋物線交于另一點C(
ca
,b+8
),求當x≥1時y1的取值范圍.

查看答案和解析>>

同步練習冊答案