【題目】在一堂數(shù)學(xué)實(shí)踐課上,趙老師給出了下列問(wèn)題:
提出問(wèn)題
(1)如圖1,在△ABC中,E是BC的中點(diǎn),P是AE的中點(diǎn),就稱CP是△ABC的“雙中線”,∠ACB=900,AC=3,AB=5.則CP=___;
探究規(guī)律
(2)在圖2中,E是正方形ABCD一邊上的中點(diǎn),P是BE上的中點(diǎn),則稱AP是正方形ABCD的“雙中線”,若AB=4.則AP的長(zhǎng)為_____;
(3)在圖3中,AP是矩形ABCD的“雙中線”, 若AB=4,BC=6,請(qǐng)仿照(2)中的方法求出AP的長(zhǎng),并說(shuō)明理由;
【答案】(1);(2);(3)AP=3
【解析】
(1)先根據(jù)勾股定理求出BC=4,再根據(jù)雙中線的定義得到E是BC的中點(diǎn),故EC=2,利用勾股定理求出AE=,再根據(jù)直角三角形斜邊上的中線求出CP的長(zhǎng);
(2)根據(jù)圖中輔助線可證明△DEP≌△FBP,得到DE=BF,利用勾股定理求出DF的長(zhǎng),即可求出AP的長(zhǎng);
(3)連接DP并延長(zhǎng)交AB的延長(zhǎng)線于F ,證明△BPF≌△EPD,在Rt△ADF中,求出DF,在Rt△ADF中,求出AP.
解:(1)在Rt△ABC中,BC=,
∵CP是△ABC的“雙中線”,
∴E是BC的中點(diǎn),故EC=2,
在Rt△ACE中,AE=
又P是AE中點(diǎn),
所以CP=AE= ;
(2)如圖2,連接DP,交AB延長(zhǎng)線與F,∵CD∥AB,∴∠F=∠PDE, ∠PBF=∠PED,
又P是BE中點(diǎn),∴BP=EP,∴△DEP≌△FBP
∴DE=BF
故AF=4+2=6,
在Rt△ADF中,DF=
又P為DF中點(diǎn),∴AP=DF=
∴AP的長(zhǎng)為;
(3)連接DP并延長(zhǎng)交AB的延長(zhǎng)線于F
∵矩形ABCD
∴AB∥CD
∴∠PBF=∠PED,∠F=∠PDE
∵P是BE的中點(diǎn)
∴PB=PE
∴△BPF≌△EPD
∴BF=DE=CD=2
在Rt△ADF中
DF=
=
=6
在Rt△ADF中
AP=DF=3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種型號(hào)的手機(jī),已知每部A型號(hào)手機(jī)的進(jìn)價(jià)比每部B型號(hào)手機(jī)進(jìn)價(jià)多500元,每部A型號(hào)手機(jī)的售價(jià)是2500元,每部B型號(hào)手機(jī)的售價(jià)是2100元.
(1)若商場(chǎng)用50000元共購(gòu)進(jìn)A型號(hào)手機(jī)10部,B型號(hào)手機(jī)20部,求A、B兩種型號(hào)的手機(jī)每部進(jìn)價(jià)各是多少元?
(2)為了滿足市場(chǎng)需求,商場(chǎng)決定用不超過(guò)7.5萬(wàn)元采購(gòu)A、B兩種型號(hào)的手機(jī)共40部,且A型號(hào)手機(jī)的數(shù)量不少于B型號(hào)手機(jī)數(shù)量的2倍.
①該商場(chǎng)有哪幾種進(jìn)貨方式?
②該商場(chǎng)選擇哪種進(jìn)貨方式,獲得的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,平分,,為的中點(diǎn),與相交于點(diǎn).若,,則的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.
(1)求A、B的坐標(biāo).
(2)求證:射線AO是∠BAC的平分線.
(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)要建一個(gè)長(zhǎng)方形的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠長(zhǎng)為18m的墻,另三邊用木欄圍城,木欄長(zhǎng)為32m.
(1)雞場(chǎng)的面積能圍成120m2嗎?
(2)雞場(chǎng)的面積能圍成130m2嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AC=6 ,點(diǎn)D為直線AB上一點(diǎn),且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,Rt△CDE中,∠ABC=∠CDE=90°,且BC與CD共線,聯(lián)結(jié)AE,點(diǎn)M為AE中點(diǎn),聯(lián)結(jié)BM,交AC于點(diǎn)G,聯(lián)結(jié)MD,交CE于點(diǎn)H
(1)求證:MB=MD;
(2)當(dāng)AB=BC,DC=DE時(shí),求證:四邊形MGCH為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是米的旗桿,從辦公樓頂端測(cè)得旗桿頂端的俯角是,旗桿底端到大樓前梯坎底邊的距離是米,梯坎坡長(zhǎng)是米,梯坎坡度,求大樓的高度.(精確到米,參與數(shù)據(jù): , , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球隊(duì)運(yùn)動(dòng)員進(jìn)行3分球投籃成績(jī)測(cè)試,每人每天投3分球10次,對(duì)甲、乙兩名隊(duì)員在5天中進(jìn)球的個(gè)數(shù)統(tǒng)計(jì)如果如下:隊(duì)員每人每天進(jìn)球數(shù)(個(gè))經(jīng)過(guò)計(jì)算,甲進(jìn)球的平均數(shù)為x甲=8和方差S2甲=3.2.
(1)求乙進(jìn)球的平均數(shù)x乙和方差S2乙;
(2)現(xiàn)在需要根據(jù)以上數(shù)據(jù),從甲、乙二人中選出一人去參加3分球投籃大賽,你認(rèn)為應(yīng)該選哪名隊(duì)員?說(shuō)說(shuō)你的理由?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com