【題目】在一堂數(shù)學(xué)實(shí)踐課上,趙老師給出了下列問(wèn)題:

提出問(wèn)題

1)如圖1,在△ABC中,EBC的中點(diǎn),PAE的中點(diǎn),就稱CP是△ABC的“雙中線”,∠ACB900AC3,AB5.則CP=___;

探究規(guī)律

2)在圖2中,E是正方形ABCD一邊上的中點(diǎn),PBE上的中點(diǎn),則稱AP是正方形ABCD的“雙中線”,若AB4.則AP的長(zhǎng)為_____;

3)在圖3中,AP是矩形ABCD的“雙中線”, 若AB4,BC6,請(qǐng)仿照(2)中的方法求出AP的長(zhǎng),并說(shuō)明理由;

【答案】1;(2;(3AP3

【解析】

1)先根據(jù)勾股定理求出BC=4,再根據(jù)雙中線的定義得到EBC的中點(diǎn),故EC=2,利用勾股定理求出AE=,再根據(jù)直角三角形斜邊上的中線求出CP的長(zhǎng);

2)根據(jù)圖中輔助線可證明△DEP△FBP,得到DE=BF,利用勾股定理求出DF的長(zhǎng),即可求出AP的長(zhǎng);

3)連接DP并延長(zhǎng)交AB的延長(zhǎng)線于F ,證明△BPF≌△EPD,在Rt△ADF中,求出DF,在Rt△ADF中,求出AP.

解:(1)在RtABC中,BC=,

CP△ABC雙中線,

EBC的中點(diǎn),故EC=2,

RtACE中,AE=

PAE中點(diǎn),

所以CPAE= ;

2)如圖2,連接DP,交AB延長(zhǎng)線與F,∵CDAB,∴∠F=∠PDE, ∠PBF=∠PED,

PBE中點(diǎn),∴BP=EP,∴△DEP△FBP

DE=BF

AF=4+2=6

RtADF中,DF=

PDF中點(diǎn),∴AP=DF=

AP的長(zhǎng)為

3)連接DP并延長(zhǎng)交AB的延長(zhǎng)線于F

矩形ABCD

∴AB∥CD

∴∠PBF∠PED,∠F∠PDE

∵PBE的中點(diǎn)

∴PBPE

∴△BPF≌△EPD

∴BFDECD2

Rt△ADF

DF

6

Rt△ADF

AP=DF3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種型號(hào)的手機(jī),已知每部A型號(hào)手機(jī)的進(jìn)價(jià)比每部B型號(hào)手機(jī)進(jìn)價(jià)多500元,每部A型號(hào)手機(jī)的售價(jià)是2500元,每部B型號(hào)手機(jī)的售價(jià)是2100元.

(1)若商場(chǎng)用50000元共購(gòu)進(jìn)A型號(hào)手機(jī)10部,B型號(hào)手機(jī)20部,求A、B兩種型號(hào)的手機(jī)每部進(jìn)價(jià)各是多少元?

(2)為了滿足市場(chǎng)需求,商場(chǎng)決定用不超過(guò)7.5萬(wàn)元采購(gòu)A、B兩種型號(hào)的手機(jī)共40部,且A型號(hào)手機(jī)的數(shù)量不少于B型號(hào)手機(jī)數(shù)量的2倍.

①該商場(chǎng)有哪幾種進(jìn)貨方式?

②該商場(chǎng)選擇哪種進(jìn)貨方式,獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,平分,,的中點(diǎn),相交于點(diǎn).,,則的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.

(1)求A、B的坐標(biāo).

(2)求證:射線AO是BAC的平分線.

(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)要建一個(gè)長(zhǎng)方形的養(yǎng)雞場(chǎng),雞場(chǎng)的一邊靠長(zhǎng)為18m的墻,另三邊用木欄圍城,木欄長(zhǎng)為32m

1)雞場(chǎng)的面積能圍成120m2嗎?

2)雞場(chǎng)的面積能圍成130m2嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AC=6 ,點(diǎn)D為直線AB上一點(diǎn),且AB=3BD,直線CD與直線BC所夾銳角的正切值為 ,并且CD⊥AC,則BC的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,RtCDE中,∠ABC=CDE=90°,且BCCD共線,聯(lián)結(jié)AE,點(diǎn)MAE中點(diǎn),聯(lián)結(jié)BM,交AC于點(diǎn)G,聯(lián)結(jié)MD,交CE于點(diǎn)H

1)求證:MB=MD;

2)當(dāng)AB=BC,DC=DE時(shí),求證:四邊形MGCH為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是米的旗桿,從辦公樓頂端測(cè)得旗桿頂端的俯角,旗桿底端到大樓前梯坎底邊的距離米,梯坎坡長(zhǎng)米,梯坎坡度,求大樓的高度.(精確到米,參與數(shù)據(jù): ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某籃球隊(duì)運(yùn)動(dòng)員進(jìn)行3分球投籃成績(jī)測(cè)試,每人每天投3分球10次,對(duì)甲、乙兩名隊(duì)員在5天中進(jìn)球的個(gè)數(shù)統(tǒng)計(jì)如果如下:隊(duì)員每人每天進(jìn)球數(shù)(個(gè))經(jīng)過(guò)計(jì)算,甲進(jìn)球的平均數(shù)為x=8和方差S2=3.2.

1)求乙進(jìn)球的平均數(shù)x和方差S2;

2)現(xiàn)在需要根據(jù)以上數(shù)據(jù),從甲、乙二人中選出一人去參加3分球投籃大賽,你認(rèn)為應(yīng)該選哪名隊(duì)員?說(shuō)說(shuō)你的理由?

查看答案和解析>>

同步練習(xí)冊(cè)答案