【題目】如圖,以AB為直徑作⊙O,點(diǎn)C為⊙O上一點(diǎn),劣弧CB沿BC翻折,交AB于點(diǎn)D,過A作⊙O的切線交DC的延長(zhǎng)線于點(diǎn)E.
(1)求證:AC=CD;
(2)已知tanE=,AC=2,求⊙O的半徑.
【答案】(1)證明見解析;(2)⊙O的半徑為.
【解析】
(1)根據(jù)折疊的性質(zhì)與圓周角定理即可得證;
(2)根據(jù)切線的性質(zhì)與圓周角定理易證∠E=∠ABC,則在Rt△ABC利用三角形函數(shù)與勾股定理求得AB=2,即⊙O的半徑為.
(1)如圖所示:
∵點(diǎn)D與點(diǎn)D′關(guān)于CB對(duì)稱,
∴CD=CD′,∠DBC=∠D′BC,
∴AC=CD′,
∴AC=CD;
(2)∵AE為⊙O的切線,
∴∠BAE=90°,
∴∠E+∠ADC=90°,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
∵AC=CD,
∴∠CAB=∠ADC,
∴∠E=∠ABC,
∴tanE=tan∠ABC==,
∵AC=2,
∴BC=4,
則AB=,
∴⊙O的半徑為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BF⊥AC,垂足為F,∠BAC=45°,原題設(shè)其它條件不變.求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=∠ACB,點(diǎn)D、E分別是AC、AB上兩點(diǎn),且AD=AE.CE、BD交于點(diǎn)O.
⑴ 求證:OB=OC;
⑵ 連接ED,若ED=EB,試說明BD平分∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點(diǎn),AF與BE相交于點(diǎn)M,CE與DF相交于點(diǎn)N,QM⊥BE,QN⊥EC相交于點(diǎn)Q,PM⊥AF,PN⊥DF相交于點(diǎn)P,若2BC=3AB,記△ABM和△CDN的面積和為S,則四邊形MQNP的面積為( )
A. S B. S C. S D. S
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一張五邊形的鋼板ABCDE如圖所示,∠A=∠B=∠C=90°,現(xiàn)在AB邊上取一點(diǎn)P,分別以AP,BP為邊各剪下一個(gè)正方形鋼板模型,所剪得的兩個(gè)正方形面積和的最大值為_____m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在Rt△ABC中,∠ABC=90°,BD⊥AC于點(diǎn)D,且AB=5,AD=4,在AD上取一點(diǎn)G,使AG=,點(diǎn)P是折線CB﹣BA上一動(dòng)點(diǎn),以PG為直徑作⊙O交AC于點(diǎn)E,連結(jié)PE.
(1)求sinC的值;
(2)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)如圖②所示,⊙O交邊AB于點(diǎn)F,求證:∠EPG=∠FPG;
(3)點(diǎn)P在整個(gè)運(yùn)動(dòng)過程中:
①當(dāng)BC或AB與⊙O相切時(shí),求所有滿足條件的DE長(zhǎng);
②點(diǎn)P以圓心O為旋轉(zhuǎn)中心,順時(shí)針方向旋轉(zhuǎn)90°得到P′,當(dāng)P′恰好落在AB邊上時(shí),求△OPP′與△OGE的面積之比(請(qǐng)直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,M是AB邊上的中點(diǎn),點(diǎn)D、E分別是AC、BC邊上的動(dòng)點(diǎn),連接DM 、ME、CM、DE, DE與CM相交于點(diǎn)F且∠DME=90°.則下列5個(gè)結(jié)論: (1)圖中共有兩對(duì)全等三角形;(2)△DEM是等腰三角形; (3)∠CDM=∠CFE;(4)AD2+BE2=DE2;(5)四邊形CDME的面積發(fā)生改變.其中正確的結(jié)論有( )個(gè).
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解題過程:
===-2;
==.
請(qǐng)回答下列問題:
(1)觀察上面的解題過程,請(qǐng)直接寫出式子= ;
(2)觀察上面的解題過程,請(qǐng)直接寫出式子= ;
(3)利用上面所提供的解法,請(qǐng)求+···+的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第一象限,斜靠在兩條坐標(biāo)軸上,∠ACB=900,且A(0,4),點(diǎn)C(2,0),BE⊥x軸于點(diǎn)E,一次函數(shù)y=x+b經(jīng)過點(diǎn)B,交y軸于點(diǎn)D。
(1)求證;△AOC≌△CEB
(2)求△ABD的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com