【題目】如圖,直線y=﹣x+3與x軸,y軸分別交于B,C兩點(diǎn),拋物線y=ax2+bx+c過A(1,0),B,C三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線在x軸下方圖形上的動(dòng)點(diǎn),過點(diǎn)M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值.
(3)在(2)的條件下,當(dāng)MN取得最大值時(shí),在拋物線的對(duì)稱軸l上是否存在點(diǎn)P,使△PBN是以BN為腰的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
【答案】
(1)
解:由題意點(diǎn)A(1,0)、B(3,0)、C(0,3)代入拋物線y=ax2+bx+c中,
得: ,解得: ,
∴拋物線的解析式為y=x2﹣4x+3.
(2)
解:設(shè)點(diǎn)M的坐標(biāo)為(m,m2﹣4m+3),設(shè)直線BC的解析式為y=kx+3,
把點(diǎn)點(diǎn)B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=﹣1,
∴直線BC的解析式為y=﹣x+3.
∵M(jìn)N∥y軸,
∴點(diǎn)N的坐標(biāo)為(m,﹣m+3).
∵拋物線的解析式為y=x2﹣4x+3=(x﹣2)2﹣1,
∴拋物線的對(duì)稱軸為x=2,
∴點(diǎn)(1,0)在拋物線的圖象上,
∴1<m<3.
∵線段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣ )2+ ,
∴當(dāng)m= 時(shí),線段MN取最大值,最大值為 .
(3)
解:假設(shè)存在.設(shè)點(diǎn)P的坐標(biāo)為(2,n).
當(dāng)m= 時(shí),點(diǎn)N的坐標(biāo)為( , ),
∴PB= = ,PN= ,BN= = .
△PBN為等腰三角形分三種情況:
①當(dāng)PB=BN時(shí),即 = ,
解得:n=± ,
此時(shí)點(diǎn)P的坐標(biāo)為(2,﹣ )或(2, ).
②當(dāng)PN=BN時(shí),即 = ,
解得:n= ,
此時(shí)點(diǎn)P的坐標(biāo)為(2, )或(2, ).
綜上可知:在拋物線的對(duì)稱軸l上存在點(diǎn)P,使△PBN是等腰三角形,點(diǎn)P的坐標(biāo)為(2,﹣ )或(2, )或(2, )或(2, ).
【解析】(1)由點(diǎn)A、B、C的坐標(biāo)利用待定系數(shù)法即可求出拋物線的解析式;(2)設(shè)出點(diǎn)M的坐標(biāo)以及直線BC的解析式,由點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法即可求出直線BC的解析式,結(jié)合點(diǎn)M的坐標(biāo)即可得出點(diǎn)N的坐標(biāo),由此即可得出線段MN的長(zhǎng)度關(guān)于m的函數(shù)關(guān)系式,再結(jié)合點(diǎn)M在x軸下方可找出m的取值范圍,利用二次函數(shù)的性質(zhì)即可解決最值問題;(3)假設(shè)存在,設(shè)出點(diǎn)P的坐標(biāo)為(2,n),結(jié)合(2)的結(jié)論可求出點(diǎn)N的坐標(biāo),結(jié)合點(diǎn)N、B的坐標(biāo)利用兩點(diǎn)間的距離公式求出線段PN、PB、BN的長(zhǎng)度,根據(jù)等腰三角形的性質(zhì)分類討論即可求出n值,從而得出點(diǎn)P的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)圖形中,既是軸對(duì)稱又是中心對(duì)稱的圖形是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論: ①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④ <a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是( )
A.①③
B.①③④
C.②④⑤
D.①③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,A(a,0)、B(b,0)且a、b滿足|a+4|+=0
①求a、b的值;
②若C(﹣6,0),連CB,作BE⊥CB,垂足為B,且BC=BE,連AE交y軸于P,求P點(diǎn)坐標(biāo);
(2)如圖2,若A(6,0),B(0,3),點(diǎn)Q從A出發(fā),以每秒1個(gè)單位的速度沿射線AO勻速運(yùn)動(dòng),設(shè)點(diǎn)Q運(yùn)動(dòng)時(shí)間為t秒,過Q點(diǎn)作直線AB的垂線,垂足為D,直線QD與y軸交于E點(diǎn),在點(diǎn)Q的運(yùn)動(dòng)過程中,一定存在△EOQ≌△AOB,請(qǐng)直接寫出存在的t值以及相應(yīng)的E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3、…在射線ON上,點(diǎn)B1、B2、B3、…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4、…均為等邊三角形,若OA1=1,則△A9B9A10的邊長(zhǎng)為( 。
A. 32 B. 64 C. 128 D. 256
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如圖所示放置,點(diǎn)A1 , A2 , A3 , 和點(diǎn)C1 , C2 , C3 , …,分別在直線y=kx+b(k>0)和x軸上,已知點(diǎn)B1 , B2 , B3 , B4的坐標(biāo)分別為(1,1)(3,2),(7,4),(15,8),則Bn的坐標(biāo)是( )
A.(2n﹣1,2n﹣1)
B.(2n , 2n﹣1)
C.(2n﹣1 , 2n)
D.(2n﹣1﹣1,2n﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC外作射線AD,使得AD和AC在直線AB的兩側(cè),∠BAD=α(0°<α<180°),點(diǎn)B關(guān)于直線AD的對(duì)稱點(diǎn)為P,連接PB,PC.
(1)依題意補(bǔ)全圖1;
(2)在圖1中,求△BPC的度數(shù);
(3)直接寫出使得△PBC是等腰三角形的α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市購進(jìn)一批文具袋,每個(gè)進(jìn)價(jià)為10元.試銷售期間,記錄的每天的銷售數(shù)量與銷售單價(jià)的數(shù)據(jù)如下表:
銷售單價(jià)x(元 | 11 | 12 | 13 | 14 | 15 | … |
銷售數(shù)量y(個(gè)) | 38 | 36 | 34 | 32 | 30 | … |
備注:物價(jià)局規(guī)定,每個(gè)文具袋的售價(jià)不低于10元且不高于18元 |
請(qǐng)你根據(jù)表中信息解答下列問題:
(1)y是x的函數(shù),其函數(shù)關(guān)系式為
(2)營(yíng)業(yè)員發(fā)現(xiàn)有一天的利潤(rùn)是150元,則銷售單價(jià)為元.
(3)試銷售的目的是想要每天獲得最大的銷售利潤(rùn).請(qǐng)你幫助銷售經(jīng)理計(jì)算一下,在這種情況下單價(jià)x(元)應(yīng)定為多少時(shí),每天的銷售利潤(rùn)w(元)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a1=22-02,a2=32-12,…,an=(n+1)2-(n-1)2(n為大于1的整數(shù))
(1)計(jì)算a15的值;
(2)通過拼圖你發(fā)現(xiàn)前三個(gè)圖形的面積之和與第四個(gè)正方形的面積之間有什么關(guān)系:
__________________________________(用含a、b的式子表示);
(3)根據(jù)(2)中結(jié)論,探究an=(n+1)2-(n-1)2是否為4的倍數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com