精英家教網 > 初中數學 > 題目詳情

【題目】如圖,點AB在線段EF上,點M、N分別是線段EA、BF的中點,EAABBF=1:2:3,若MN=8cm,則線段EF的長是(  )

A. 10 cm B. 11 cm C. 12 cm D. 13 cm

【答案】C

【解析】

由于EA:AB:BF=1:2:3,可以設EA=x,AB=2x,BF=3x,而M、N分別為EA、BF的中點,那么線段MN可以用x表示,而MN=8cm,由此即可得到關于x的方程,解方程即可求出線段EF的長度.

EA:AB:BF=1:2:3,

可以設EA=x,AB=2x,BF=3x,

M、N分別為EA、BF的中點,

MA=EA,NB=BF,

MN=MA+AB+BN=x+2x+x=4x

MN=8cm,

4x=8,

x=2,

EF=EA+AB+BF=6x=12,

EF的長為12cm,

故選D.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果點P由點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s.連接PQ,設運動時間為t(s)(0<t<4),解答下列問題:

(1)設△APQ的面積為S,當t為何值時,S取得最大值?S的最大值是多少?
(2)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當四邊形PQP′C為菱形時,求t的值;′
(3)當t為何值時,△APQ是等腰三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,四邊形ABCD和四邊形AECF都是矩形,AE與BC交于點M,CF與AD交于點N.

(1)求證:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF滿足何種關系時,四邊形AMCN是菱形,證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,邊長為 a的正方形ABCD和邊長為 b的正方形BEFG排放在一起,O1和O2分別是這兩個正方形的中心,則陰影部分的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】人民網為了解百姓對時事政治關心程度,特對18~35歲的青年人每天發(fā)微博數量進行調查,設一個人的“日均發(fā)微博條數”為m,規(guī)定:當m≥10時為甲級,當5≤m<10時為乙級,當0≤m<5時為丙級,現隨機抽取20個符合年齡條件的青年人開展調查,所抽青年人的“日均發(fā)微博條數”的數據如下:

0

8

2

8

10

13

7

5

7

3

12

10

7

11

3

6

8

14

15

12


(1)樣本數據中為甲級的頻率為;(直接填空)
(2)求樣本中乙級數據的中位數和眾數.
(3)從樣本數據為丙級的人中隨機抽取2人,用列舉法或樹狀圖求抽得2個人的“日均發(fā)微博條數”都是3的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面的情景對話,然后解答問題:

老師:我們新定義一種三角形,兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.

小明:那直角三角形是否存在奇異三角形呢?

小紅:等邊三角形一定是奇異三角形.

(1)根據奇異三角形的定義,小紅得出命題:等邊三角形一定是奇異三角形,則小紅提出的命題是 .(真命題假命題”)

(2)是奇異三角形,其中兩邊的長分別為、,則第三邊的長為 .

(3)如圖,中,,為斜邊作等腰直角三角形,上方的一點,且滿足.求證:是奇異三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩家超市進行促銷活動,甲超市采用“買100減50”的促銷方式,即購買商品的總金額滿100元但不足200元,少付50元;滿200元但不足300元,少付100元;….乙超市采用“打6折”的促銷方式,即顧客購買商品的總金額打6折.
(1)若顧客在甲商場購買商品的總金額為x(100≤x<200)元,優(yōu)惠后得到商家的優(yōu)惠率為p(p= ),寫出p與x之間的函數關系式,并說明p隨x的變化情況;
(2)王強同學認為:如果顧客購買商品的總金額超過100元,實際上甲超市采用“打5折”、乙超市采用“打6折”,那么當然選擇甲超市購物.請你舉例反駁;
(3)品牌、質量、規(guī)格等都相同的某種商品,在甲乙兩商場的標價都是x(300≤x<400)元,認為選擇哪家商場購買商品花錢較少?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線,交CE的延長線于點F,且AF=BD,連接BF.

(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC.

(1)求證△BCD是直角三角形;
(2)點P為線段BD上一點,若∠PCO+∠CDB=180°,求點P的坐標;
(3)點M為拋物線上一點,作MN⊥CD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標.

查看答案和解析>>

同步練習冊答案