【題目】如圖,在ABCD中,點G是BC延長線上一點,AG與BD交于點E,與DC交于點F,則圖中相似三角形共有幾對?分別寫出來.
【答案】圖中一共有6對相似三角形, ①△ABD∽△CDB;②△ABE∽△FDE;③△AED∽△GEB;④△ABG∽△FCG∽△FDA.
【解析】
根據(jù)平行四邊形的對邊平行,再根據(jù)平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似找出相似三角形即可得解.
在ABCD中,AB∥CD,
所以,△ABE∽△FDE,△ABG∽△FCG,
AD∥BC,
所以,△ADE∽△GBE,△FDA∽△FCG,
所以△ABG∽△FDA,△ABD∽△BCD
故圖中相似三角形有6對.分別為:①△ABD∽△CDB;②△ABE∽△FDE;③△AED∽△GEB;④△ABG∽△FCG∽△FDA.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點A的坐標(biāo)為(0,2),點B的坐標(biāo)為(0,-3),反比例函數(shù)y=的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過點A,C.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點P是反比例函數(shù)圖象上的一點,△AOP的面積恰好等于正方形ABCD的面積,求P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA,PB是⊙O的切線,A,B是切點,點C是劣弧AB上的一點,若∠P=40°,則∠ACB等于( )
A. 80° B. 110° C. 120° D. 140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點C落在處,交AD于點E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A、B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12m,由此他就知道了A、B間的距離.有關(guān)他這次探究活動的描述錯誤的是( )
A. AB=24m B. MN∥AB
C. △CMN∽△CAB D. CM:MA=1:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點A是y軸負(fù)半軸上的一個動點,點B是x軸負(fù)半軸上的一個動點,連接AB,過點B作AB的垂線,使得BC=AB,且點C在x軸的上方.
(1)求證:∠CBD=∠BAO;
(2)如圖2,點A、點B在滑動過程中,把AB沿y軸翻折使得AB'剛好落在AC的邊上,此時BC交y軸于點H,過點C作CN垂直y軸于點N,求證AH=2CN;
(3)如圖3,點A、點B在滑動過程中,使得點C在第二象限內(nèi),過點C作CF垂直y軸于點F,求證:OB=AO+CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,點E、F、G、H分別在AB、BC、CD、DA上,且滿足AE∶BF∶CG∶DH=1∶2∶3∶4. 問當(dāng)AE長為多少時,四邊形EFGH的面積最小?并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在∠AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點P,則下列結(jié)論中①△AOD≌△BOC,②△APC≌△BPD,③點P在∠AOB的平分線上.正確的是__.(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF, 則下列結(jié)論:
①△EBF≌△DFC;
②四邊形AEFD為平行四邊形;
③當(dāng)AB=AC,∠BAC=1200時,四邊形AEFD是正方形.
其中正確的結(jié)論是 .(請寫出正確結(jié)論的番號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com