【題目】將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,友情提示:,.

1)①若,則的度數(shù)為__________;

②若,則的度數(shù)為__________.

2)由(1)猜想的數(shù)量關系,并說明理由;

3)當且點在直線的上方時,當這兩塊角尺有一組邊互相平行時,請直接寫出角度所有可能的值.

【答案】(1)①答案為:;②答案為:;(2);(3)

【解析】

1)①根據(jù)∠DCE和∠ACD的度數(shù),求得∠ACE的度數(shù),再根據(jù)∠BCE求得∠ACB的度數(shù);②根據(jù)∠BCE和∠ACB的度數(shù),求得∠ACE的度數(shù),再根據(jù)∠ACD求得∠DCE的度數(shù);
2)根據(jù)∠ACE=90°-DCE以及∠ACB=ACE+90°,進行計算即可得出結論;
3)分2種情況進行討論:當CBAD時,當EBAC時,分別求得∠ACE角度即可.

解:(1)①∵∠DCE=50°,∠ACD=90°

∴∠ACE=40°

∵∠BCE=90°

∴∠ACB=90°+40°=130°

故答案為:130

②∵∠ACB=120°,∠ECB=90°
∴∠ACE=120°-90°=30°
∴∠DCE=90°-ACE=90°-30°=60°
故答案為:60°

2)猜想:

理由如下:

;

3,

理由:當CBAD時,∠ACE=30°;
EBAC時,∠ACE=45°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某地電話撥號入網(wǎng)有兩種收費方式,用戶可以任選其一.

計時制:0.05/;

包月制:50/(限一部個人住宅電話上網(wǎng)).

此外,每一種上網(wǎng)方式都得加收通信費0.02/.

(1)某用戶某月上網(wǎng)的時間為x小時,請你分別寫出兩種收費方式下該用戶應該支付的費用.

(2)若某用戶估計一個月內上網(wǎng)的時間為20小時,你認為采用哪種方式較為合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知多項式4x6y2- 3x2y- x- 7,次數(shù)是b4ab互為相反數(shù),在數(shù)軸上,點A表示數(shù)a,點B表示數(shù)b

1a=____________,b=____________

2)若小螞蟻甲從點A處以3個單位長度/秒的速度向左運動,同時小螞蟻乙從點B處以4單位長度/秒的速度也向左運動,丙同學觀察兩只小螞蟻運動,在它們剛開始運動時,在原點0處放置一顆飯粒,乙在碰到飯粒后立即背著飯粒以原來的速度向相反的方向運動,設運動的時間為t秒,求甲、乙兩只小螞蟻到原點的距離相等時所對應的時間t.(寫出解答過程)

3)若小螞蟻甲和乙約好分別從A,B兩點,分別沿數(shù)軸甲向左,乙向右以相同的速度爬行,經(jīng)過一段時間原路返回,剛好在16s時一起重新回到原出發(fā)點AB,設小螞蟻們出發(fā)ts)時的速度為vmm/s),vt之間的關系如下圖.(其中s表示時間單位秒,mm表示路程單位毫米)

t s

0<t≤2

2<t≤5

5<t≤16

vmm/s

10

16

8

①當2<t≤5時,你知道小螞蟻甲與乙之間的距離嗎?(用含有t的代數(shù)式表示);

②當t__________________時,小螞蟻甲乙之間的距離是42mm.(請直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于的一元二次方程

(1)求證:該方程有兩個實數(shù)根;

(2)若該方程的兩個實數(shù)根、滿足,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,∠ACB的平分線交AB于D,已知∠DCB=2∠B,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD BC于點 D,過點 D DEAD AB 于點 E,以 AE 為直徑作⊙O

(1)求證:BC 是⊙O 的切線;

(2)若 AC=3,BC=4,求 BE 的長.

(3)在(2)的條件中,求 cosEAD 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,CD在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF∠A=∠D,AB=DC

1)求證:四邊形BFCE是平行四邊形;

2)若AD=10DC=3,∠EBD=60°,則BE= 時,四邊形BFCE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場購進一批 30 瓦的 LED 燈泡和普通白熾燈泡進行銷售,其進價與標價如下表:

LED 燈泡

普通白熾燈泡

進價(元)

45

25

標價(元)

60

30

(1)該商場購進了 LED 燈泡與普通白熾燈泡共 300 個,LED 燈泡按標價進行銷售,而普通 白熾燈泡打九折銷售,當銷售完這批燈泡后可獲利 3 200 元,求該商場購進 LED 燈泡與 普通白熾燈泡的數(shù)量分別為多少個?

(2)由于春節(jié)期間熱銷,很快將兩種燈泡銷售完,若該商場計劃再次購進這兩種燈泡 120 個, 在不打折的情況下,請問如何進貨,銷售完這批燈泡時獲利最多且不超過進貨價的 30%, 并求出此時這批燈泡的總利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某單位在五月份準備組織部分員工到背景旅游7天,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報價均為每人7天共2000天,兩家旅行社同時都對10人以上的團體推出了優(yōu)惠舉措;甲旅行社對每位員工七五折優(yōu)惠;而乙旅行社是免去一位員工的費用,其余員工八折優(yōu)惠.

1)如果設參加旅游的員工共有人,則甲旅行社的費用為 元,乙旅行社的費用為 元;(用含的式子表示,并化簡)

2)假如這個單位有20名員工參加旅游,該單位選擇哪一家旅行社比較合算?并說明理由.

3)假如這7天的日期之和為63的倍數(shù),則他們可能于五月幾號出發(fā)?(寫出所有符合條件的可能性,并寫出簡單的計算過程)

查看答案和解析>>

同步練習冊答案