A. | 10√33 | B. | 5 | C. | 10√3 | D. | 5√3 |
分析 連結OP、OA,根據(jù)切線長定理得到PA=PB,OP平分∠APB,根據(jù)切線的性質得OA⊥PA,則∠APO=12∠APB=30°,解Rt△APO即可求出OA的長.
解答 解:如圖,連結OP、OA,
∵PA、PB分別切⊙O于A
∴PA=PB,OP平分∠APB,OA⊥PA,
∴∠APO=12∠APB=12×60°=30°,
∵在Rt△APO中,PA=10,
∴OA=AP•tan∠APO=10×√33=10√33.
故選A.
點評 本題考查了切線的性質:圓的切線垂直于經(jīng)過切點的半徑.也考查了切線長定理和解直角三角形.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | 66x=60x−2 | B. | 66x−2=60x | C. | 66x=60x+2 | D. | 66x+2=60x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com