【題目】若規(guī)定兩數(shù)a、b通過(guò)“※”運(yùn)算,得到4ab,即a※b=4ab,例如2※6=4×2×6=48
(1)求3※5的值;
(2)求x※x+2※x-2※4=0中x的值;
(3)若無(wú)論x是什么數(shù),總有a※x=x,求a的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列方程采用配方法求解較簡(jiǎn)便的是( )
A. 3x2+x-1=0 B. 4x2-4x-5=0 C. x2-7x=0 D. (x-3)2=4x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△OAB各頂點(diǎn)的坐標(biāo)分別為:O(0,0),A(1,2),B(0,3),以O為位似中心,△OA′B′與△OAB位似,若B點(diǎn)的對(duì)應(yīng)點(diǎn)B′的坐標(biāo)為(0,﹣6),則A點(diǎn)的對(duì)應(yīng)點(diǎn)A′坐標(biāo)為( )
A. (﹣2,﹣4) B. (﹣4,﹣2) C. (﹣1,﹣4) D. (1,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與△CDE都是等邊三角形,點(diǎn)E、F分別為AC、BC的中點(diǎn).
(1)求證:四邊形EFCD是菱形;
(2)如果AB=8,求D、F兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,平面直角坐標(biāo)系中,⊙O1與x軸相切于點(diǎn)A(-2,0),與y軸交于B、C兩點(diǎn),O1B的延長(zhǎng)線交x軸于點(diǎn)D(,0),連結(jié)AB.
(1)求證:∠ABO1=∠ABO;
(2)設(shè)E為優(yōu)弧的中點(diǎn),連結(jié)AC、BE交于點(diǎn)F,請(qǐng)你探求BE·BF的值.
(3)如圖2,過(guò)A、B兩點(diǎn)作⊙O2與y軸的正半軸交于點(diǎn)M,與BD的延長(zhǎng)線交于點(diǎn)N,當(dāng)⊙O2的大小變化時(shí),給出下列兩個(gè)結(jié)論.
①BM-BN的值不變;②BM+BN的值不變,其中有且只有一個(gè)結(jié)論是正確的,請(qǐng)你判斷哪一個(gè)結(jié)論正確,證明正確的結(jié)論并求出其值.
(友情提示:如圖3,如果DE∥BC,那么)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義運(yùn)算:ab=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的兩根,則bb﹣aa的值為( )
A. 0 B. 1 C. 2 D. 與m有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程(k﹣1)x2+2kx+2=0.
(1)求證:無(wú)論k為何值,方程總有實(shí)數(shù)根.
(2)設(shè)x1,x2是方程(k﹣1)x2+2kx+2=0的兩個(gè)根,記,S的值能為2嗎?若能,求出此時(shí)k的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是 ( )
A. 7a-a=6 B. a2·a3=a5 C. (a3)3=a6 D. (ab)4=ab4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知方程x2-x-3=0 的兩根是x1,x2 ,則x1+x2 =________,x1x2 =________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com