【題目】如圖,矩形的頂點(diǎn)分別在軸的正半軸上,點(diǎn)在反比例函數(shù)的第一象限內(nèi)的圖像上,,動(dòng)點(diǎn)軸的上方,且滿(mǎn)足.

(1)若點(diǎn)在這個(gè)反比例函數(shù)的圖像上,求點(diǎn)的坐標(biāo);

(2)連接,求的最小值;

(3)若點(diǎn)是平面內(nèi)一點(diǎn),使得以為頂點(diǎn)的四邊形是菱形,則請(qǐng)你直接寫(xiě)出滿(mǎn)足條件的所有點(diǎn)的坐標(biāo).

【答案】1)點(diǎn)P的坐標(biāo)為(6,2);(2;(3Q (4,5),Q (4+,5)Q (42,1),Q (4+2,1)

【解析】

(1)首先根據(jù)點(diǎn)B坐標(biāo),確定反比例函數(shù)的解析式,設(shè)點(diǎn)P的縱坐標(biāo)為m(m>0),根據(jù),構(gòu)建方程即可解決問(wèn)題;

(2)過(guò)點(diǎn)(0,2),作直線ly,(1)知,點(diǎn)P的縱坐標(biāo)為2,推出點(diǎn)P在直線l上作點(diǎn)O關(guān)于直線l的對(duì)稱(chēng)點(diǎn)O',則OO'=4,連接AO'交直線l于點(diǎn)P,此時(shí)PO+PA的值最小;

(3)分兩種情形分別求解即可解決問(wèn)題;

(1)∵四邊形OABC是矩形,OA=4,OC=3,

∴點(diǎn)B的坐標(biāo)為(4,3),

∵點(diǎn)B在反比例函數(shù)的第一象限內(nèi)的圖象上

k=12

y=,

設(shè)點(diǎn)P的縱坐標(biāo)為m(m>0),

OAm=OAOC,

m=2,

當(dāng)點(diǎn),P在這個(gè)反比例函數(shù)圖象上時(shí),則2=

x=6

∴點(diǎn)P的坐標(biāo)為(6,2)

(2)過(guò)點(diǎn)(0,2),作直線ly軸.

(1)知,點(diǎn)P的縱坐標(biāo)為2,

∴點(diǎn)P在直線l

作點(diǎn)O關(guān)于直線l的對(duì)稱(chēng)點(diǎn)O',則OO'=4,

連接AO'交直線l于點(diǎn)P,此時(shí)PO+PA的值最小,

PO+PA的最小值=PO'+PA=O'A=

(3)

①如圖2中,當(dāng)四邊形ABQP是菱形時(shí),易知AB=P=PQ=BQ=3,P (4,2),P (4,2),

Q (4,5),Q (4+,5)

②如圖3中,當(dāng)四邊形ABPQ是菱形時(shí),P (42,2),P(4+2,2),

Q (42,1)Q (4+2,1)

綜上所述,點(diǎn)Q的坐標(biāo)為Q (4,5),Q (4+,5)Q (42,1),Q (4+2,1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,tanA=,AB=13,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A'B'C,P為線段A′B′上的動(dòng)點(diǎn),以點(diǎn)P為圓心,PA′長(zhǎng)為半徑作⊙P,當(dāng)⊙P與△ABC的邊相切時(shí),⊙P的半徑為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,點(diǎn)C是直徑AB延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)C作⊙O的切線,切點(diǎn)為D,連結(jié)BD.

(1)求證:∠A=∠BDC;

(2)若CM平分∠ACD,且分別交AD、BD于點(diǎn)M、N,當(dāng)DM=1時(shí),求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),直線無(wú)論取何值,直線總過(guò)定點(diǎn)

1)求定點(diǎn)的坐標(biāo);

2)如圖1,若點(diǎn)為直線(點(diǎn)除外)一動(dòng)點(diǎn),過(guò)點(diǎn)軸的垂線交直線于點(diǎn),點(diǎn)在直線上,距離點(diǎn)為個(gè)單位,點(diǎn)橫坐標(biāo)為的面積為,求與的函數(shù)關(guān)系式;

3)若直線關(guān)于軸對(duì)稱(chēng)后再向上平移個(gè)單位得到直線,如圖2, 點(diǎn)是直線上兩點(diǎn),點(diǎn)為第一象限內(nèi)(兩點(diǎn)除外)的一點(diǎn),且,直線分別交軸于點(diǎn)兩點(diǎn),問(wèn)線段有什么數(shù)量關(guān)系,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰梯形ABCD中,ABDCADBCCD,點(diǎn)EAB上一點(diǎn),連結(jié)CE,請(qǐng)?zhí)砑右粋(gè)你認(rèn)為合適的條件 ,使四邊形AECD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】10分在RtABC中,BAC=,D是BC的中點(diǎn),E是AD的中點(diǎn)過(guò)點(diǎn)A作AFBC交BE的延長(zhǎng)線于點(diǎn)F

1求證:AEFDEB;

2證明四邊形ADCF是菱形;

3AC=4,AB=5,求菱形ADCFD 的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在中,是鈍角,讓點(diǎn)C在射線BD上向右移動(dòng),則(

A.將先變成直角三角形,然后再變成銳角三角形,而不會(huì)再是鈍角三角形

B.將變成銳角三角形,而不會(huì)再是鈍角三角形

C.將先變成直角三角形,然后再變成銳角三角形,接著又由銳角三角形變?yōu)殁g角三角形

D.先由鈍角三角形變?yōu)橹苯侨切危僮優(yōu)殇J角三角形,接著又變?yōu)橹苯侨切,角形然后再次變(yōu)殁g角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在東西方向的海岸線l上有一長(zhǎng)為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時(shí)刻測(cè)得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距千米的A處;經(jīng)過(guò)40分鐘,又測(cè)得該輪船位于O的正北方向,且與O相距20千米的B處.

(1)求該輪船航行的速度;

(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=﹣x2+bx+cc0)的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M

1)求二次函數(shù)的解析式;

2)點(diǎn)P為線段BM上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫(xiě)出m的取值范圍;

3)探索:線段BM上是否存在點(diǎn)N,使NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案