【題目】如圖,AB是⊙O的直徑,C是線(xiàn)段OB上的一點(diǎn)(不與點(diǎn)B重合),D,E是半圓上的點(diǎn)且CD與BE交于點(diǎn)F,用①,②DC⊥AB,③FB=FD中的兩個(gè)作為題設(shè),余下的一個(gè)作為結(jié)論組成一個(gè)命題,則組成真命題的個(gè)數(shù)為( )
A.0B.1C.2D.3
【答案】D
【解析】
連接OE、OD,
(1)當(dāng),DC⊥AB時(shí),由圓周角定理可得∠EOD=∠DOB,根據(jù)等腰三角形的性質(zhì)可得OF⊥BE,由CD⊥AB可得∠OFB=∠OCD=90°,利用AAS可證明△OCD≌OFB,可得∠ODC=∠OBF,根據(jù)等腰三角形的性質(zhì)可得∠OBD=∠ODB,利用角的和差關(guān)系可得∠FBD=∠FDB,即可證明FB=FD;
(2)當(dāng),FB=FD時(shí),同(1)可得OF⊥BE,根據(jù)等腰三角形的性質(zhì)可得∠OBD=∠ODB,∠FBD=∠FDB,利用角的和差關(guān)系可得∠ODC=∠OBF,利用ASA可證明△OCD≌OFB,可得∠OFB=∠OCD=90°,可得DC⊥AB;
(3)當(dāng)DC⊥AB,FB=FD時(shí),同(2)可得△OCD≌OFB,由DC⊥AB可得∠OFB=∠OCD=90°,根據(jù)垂徑定理可得,綜上即可得答案.
如圖,連接OE、OD,
(1)當(dāng),DC⊥AB時(shí),
∵,OD為半徑,
∴∠EOD=∠DOB,
∵OE=OB,
∴OF⊥BE,
∴∠OFB=90°,
∵DC⊥AB,
∴∠DCB=∠OFB=90°,
在△OCD和△OFB中,,
∴△OCD≌△OFB,
∴∠ODC=∠OBF,
∵OD=OB,
∴∠ODB=∠OBD,
∴∠OBD-∠OBF=∠ODB-∠ODC,即∠FDB=∠FBD,
∴FB=FD.
(2)當(dāng),FB=FD時(shí),
∵,OD為半徑,
∴∠EOD=∠DOB,
∵OE=OB,
∴OF⊥BE,
∴∠OFB=90°,
∵OD=OB,FB=FD,
∴∠ODB=∠OBD,∠FDB=∠FBD,
∴∠ODC=∠OBF,
在△OCD和△OFB中,,
∴△OCD≌△OFB,
∴∠OCD=∠OFB=90°,
∴DC⊥AB.
(3)當(dāng)DC⊥AB,FB=FD時(shí),
∵DC⊥AB,
∴∠OCD=90°,
∵OD=OB,FB=FD,
∴∠ODB=∠OBD,∠FDB=∠FBD,
∴∠ODC=∠OBF,
在△OCD和△OFB中,,
∴△OCD≌△OFB,
∴∠OFB=∠OCD=90°,
∴OD⊥BE,
∵OD是半徑,
∴.
綜上所述,組成真命題的個(gè)數(shù)為3,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在慈善一日捐活動(dòng)中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計(jì),并繪制成下面的統(tǒng)計(jì)圖.
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)該校共有600名學(xué)生參與捐款,請(qǐng)估計(jì)該校學(xué)生的捐款總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】臨近期末考試,心理專(zhuān)家建議考生可通過(guò)以下四種方式進(jìn)行考前減壓:.享受美食,.交流談心,.體育鍛煉,.欣賞藝術(shù).
(1)隨機(jī)采訪(fǎng)一名九年級(jí)考生,選擇其中某一種方式,他選擇“享受美食”的概率是 .
(2)同時(shí)采訪(fǎng)兩名九年級(jí)考生,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求他們中至少有一人選擇“欣賞藝術(shù)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0),B(3,0).請(qǐng)解答下列問(wèn)題:
(1)求拋物線(xiàn)的解析式;
(2)點(diǎn)E(2,m)在拋物線(xiàn)上,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)H,點(diǎn)F是AE中點(diǎn),連接FH,求線(xiàn)段FH的長(zhǎng).
注:拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸是x=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D是AB上一點(diǎn),以AD為直徑作⊙O交AC于E,與BC相切于點(diǎn)F,連接AF.
(1)求證:∠BAF=∠CAF;
(2)若AC=3,BC=4,求BD和CE的長(zhǎng);
(3)在(2)的條件下,若AF與DE交于H,求FHFA的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在校運(yùn)會(huì)中取得更好的成績(jī),小丁積極訓(xùn)練.在某次試投中鉛球所經(jīng)過(guò)的路線(xiàn)是如圖所示的拋物線(xiàn)的一部分.已知鉛球出手處A距離地面的高度是米,當(dāng)鉛球運(yùn)行的水平距離為3米時(shí),達(dá)到最大高度的B處.小丁此次投擲的成績(jī)是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,P是邊BC上的一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為E,連接AE,連接DE并延長(zhǎng)交射線(xiàn)AP于點(diǎn)F,連接BF
(1)若,直接寫(xiě)出的大小(用含的式子表示).
(2)求證:.
(3)連接CF,用等式表示線(xiàn)段AF,BF,CF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,D是邊BC上一點(diǎn),以點(diǎn)A為圓心,AD長(zhǎng)為半徑作弧,如果與邊BC有交點(diǎn)E(不與點(diǎn)D重合),那么稱(chēng)為的A-外截弧.例如,圖中是的一條A-外截弧.在平面直角坐標(biāo)系xOy中,已知存在A-外截弧,其中點(diǎn)A的坐標(biāo)為,點(diǎn)B與坐標(biāo)原點(diǎn)O重合.
(1)在點(diǎn),,,中,滿(mǎn)足條件的點(diǎn)C是_______.
(2)若點(diǎn)C在直線(xiàn)上.
①求點(diǎn)C的縱坐標(biāo)的取值范圍.
②直接寫(xiě)出的A-外截弧所在圓的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接國(guó)慶節(jié),某商店購(gòu)進(jìn)了一批成本為每件30元的紀(jì)念商品.經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷(xiāo)售量(件與銷(xiāo)售單價(jià)(元滿(mǎn)足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷(xiāo)售量與銷(xiāo)售單價(jià)的函數(shù)關(guān)系式;
(2)若商店按不低于成本價(jià),且不高于60元的單價(jià)銷(xiāo)售,則銷(xiāo)售單價(jià)定為多少,才能使銷(xiāo)售該商品每天獲得的利潤(rùn)(元最大?最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com