拋物線與x軸的交點分別為原點O和點A,點B(2,n)在這條拋物線上.
(1)求點B的坐標(biāo);
(2)點P在線段OA上,從點O出發(fā)向點A運動,過點P作x軸的垂線,與直線OB交于點E,以PE為邊在PE右側(cè)作正方形PEDC(當(dāng)點P運動時,點C、D也隨之運動).
①當(dāng)正方形PEDC頂點D落在此拋物線上時,求OP的長;
②若點P從點O出發(fā)向點A作勻速運動,速度為每秒1個單位,同時線段OA上另一個點Q從點A出發(fā)向點O作勻速運動,速度為每秒2個單位(當(dāng)點Q到達(dá)點O時停止運動,點P也停止運動).過Q作x軸的垂線,與直線AB交于點F,在QF的左側(cè)作正方形QFMN(當(dāng)點Q運動時,點M、N也隨之運動).若點P運動到t秒時,兩個正方形分別有一條邊恰好落在同一條直線上,求此刻t的值.
(1)點B的坐標(biāo)為(2,4)(2)

試題分析:(1)點B的坐標(biāo)為(2,4).
(2) ①設(shè)OP的長為t,那么PE=2t,ED=2t,點D的坐標(biāo)為(3t, 2t).當(dāng)點D落在拋物線上時,.解得
②當(dāng)兩條邊CD與MN在同一條直線上時,點C、N重合,此時6t=10.解得t
當(dāng)兩條邊CDQF在同一條直線上時,點C、Q重合,此時5t=10.解得t=2.
當(dāng)兩條邊PEMN在同一條直線上時,點P、N重合,此時4t=10.解得t
當(dāng)兩條邊PEQF在同一條直線上時,點P、Q重合,此時3t=10.解得t
點評:在解題時要能靈運用二次函數(shù)的圖象和性質(zhì)求出二次函數(shù)的解析式,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知A(﹣4,0),B(0,4),現(xiàn)以A點為位似中心,相似比為9:4,將OB向右側(cè)放大,B點的對應(yīng)點為C.

(1)求C點坐標(biāo)及直線BC的解析式;
(2)一拋物線經(jīng)過B、C兩點,且頂點落在x軸正半軸上,求該拋物線的解析式并畫出函數(shù)圖象;
(3)現(xiàn)將直線BC繞B點旋轉(zhuǎn)與拋物線相交與另一點P,請找出拋物線上所有滿足到直線AB距離為的點P.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進(jìn)行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天,x為整數(shù))的函數(shù)關(guān)系如圖1所示,櫻桃價格z(單位:元/千克)與上市時間x(單位:天,x為整數(shù))的函數(shù)關(guān)系如圖2所示.

(1)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;
(2)上市后的第12天至第15天這4天中,哪天的銷售金額最多?是多少?
(3)上市后的前15天中,銷售金額最多的是哪一天?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線過點A(-1,0),B(0,6),對稱軸為直線x=1
(1)求拋物線的解析式
(2)畫出拋物線的草圖
(3)根據(jù)圖象回答:當(dāng)x取何值時,y>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的對稱軸是( ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過(1,)、(2,)兩點,與x軸的兩個交點的右邊一個交點為點A,與y軸交于點B.
(1)求此二次函數(shù)的解析式并畫出這個二次函數(shù)的圖象;
(2)求線段AB的中垂線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

將下列函數(shù)圖像沿y軸向上平移a(a>0)個單位長度后,不經(jīng)過原點的有    (填寫正確的序號).
① y=;②y=3x-3;③y=x2+3x+3;④y=-(x-3)2+3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商人開始時,將進(jìn)價為每件8元的某種商品按每件10元出售,每天可售出100件.他想采用提高售價的辦法來增加利潤,經(jīng)試驗,發(fā)現(xiàn)這種商品每件每提價l元,每天的銷售量就會減少10件.
(1)寫出售價x(元/件)與每天所得的利潤y(元)之間的函數(shù)關(guān)系式;
(2)每件售價定為多少元,才能使一天的利潤最大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交x軸于兩點,交軸于點,點為拋物線的頂點,且兩點的橫坐標(biāo)分別為1和4.

(1)求點B的坐標(biāo);
(2)求二次函數(shù)的函數(shù)表達(dá)式;
(3)在(2)的拋物線上,是否存在點P,使得45°?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案