某商人開始時,將進(jìn)價為每件8元的某種商品按每件10元出售,每天可售出100件.他想采用提高售價的辦法來增加利潤,經(jīng)試驗,發(fā)現(xiàn)這種商品每件每提價l元,每天的銷售量就會減少10件.
(1)寫出售價x(元/件)與每天所得的利潤y(元)之間的函數(shù)關(guān)系式;
(2)每件售價定為多少元,才能使一天的利潤最大。
(1)y=-10x2+280x-1600  (2)14元

試題分析:(1)根據(jù)題中等量關(guān)系為:利潤=(售價-進(jìn)價)×售出件數(shù),每件利潤是(x-8)元,因為每件10元則賣出100件,每升高1元,件數(shù)即少了10件,那么件數(shù)是100-10(x-10)件,列出方程式為:y=(x-8)[100-10(x-10)],
即y=-10x2+280x-1600;
(2)該函數(shù)開口向下,要求出利潤最高,則是求出函數(shù)的頂點的縱坐標(biāo),
將(1)中方程式配方得:
y=-10(x-14)2+360,
∴當(dāng)x=14時,y最大=360元,
答:售價為14元時,利潤最大
點評:該題是常考題,主要考查學(xué)生對二次函數(shù)在實際中的應(yīng)用,先分析、理清x和y的關(guān)系,再列出函數(shù)關(guān)系式,通過函數(shù)的性質(zhì),求出最值。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

為了美觀,在加工太陽鏡時將下半部分輪廓制作成拋物線的形狀(如圖所示).對應(yīng)的兩條拋物線關(guān)于y軸對稱,AEx軸,AB=4cm,最低點C軸上,高CH=1cm,BD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為(     )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線交x軸于點A(-1,0),交y軸于B點,;過A、B兩點的拋物線交x軸于另一點C(3,0).

(1)求直線AB的表達(dá)式;
(2)求拋物線的表達(dá)式;
(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線y= -x+3與x軸,y軸分別相交于點B、C,經(jīng)過B、C兩點的拋物線與x軸的另一交點為A,頂點為P,且對稱軸為直線x=2.

(1)求A點的坐標(biāo);
(2)求該拋物線的函數(shù)表達(dá)式;
(3)連結(jié)AC.請問在x軸上是否存在點Q,使得以點P、B、Q為頂點的三角形與△ABC 相似,若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2+(m﹣3)x﹣3(m>0)的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.

(1)求點A的坐標(biāo);
(2)當(dāng)∠ABC=45°時,求m的值;
(3)已知一次函數(shù)y=kx+b,點P(n,0)是x軸上的一個動點,在(2)的條件下,過點P垂直于x軸的直線交這個一次函數(shù)的圖象于點M,交二次函數(shù)y=mx2+(m﹣3)x﹣3(m>0)的圖象于N.若只有當(dāng)﹣2<n<2時,點M位于點N的上方,求這個一次函數(shù)的解析式.==

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線與x軸的交點分別為原點O和點A,點B(2,n)在這條拋物線上.
(1)求點B的坐標(biāo);
(2)點P在線段OA上,從點O出發(fā)向點A運動,過點P作x軸的垂線,與直線OB交于點E,以PE為邊在PE右側(cè)作正方形PEDC(當(dāng)點P運動時,點C、D也隨之運動).
①當(dāng)正方形PEDC頂點D落在此拋物線上時,求OP的長;
②若點P從點O出發(fā)向點A作勻速運動,速度為每秒1個單位,同時線段OA上另一個點Q從點A出發(fā)向點O作勻速運動,速度為每秒2個單位(當(dāng)點Q到達(dá)點O時停止運動,點P也停止運動).過Q作x軸的垂線,與直線AB交于點F,在QF的左側(cè)作正方形QFMN(當(dāng)點Q運動時,點M、N也隨之運動).若點P運動到t秒時,兩個正方形分別有一條邊恰好落在同一條直線上,求此刻t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過點A(1,0),與軸交于點B.

(1)求拋物線的解析式和頂點坐標(biāo);
(2)若P是坐標(biāo)軸上一點,且三角形PAB是以AB為腰的等腰三角形,試求P點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的部分圖象如圖所示,若y>0,則的取值范圍是(   )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一條拋物線經(jīng)過點(0,0)、(12,0),則這條拋物線的對稱軸是直線                

查看答案和解析>>

同步練習(xí)冊答案