【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時出發(fā),甲車以每小時60千米/時的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止甲、乙兩車相距的路程(千米)與甲車的行駛時間()之間的函數(shù)關(guān)系如圖所示:

(1)乙年的速度為______千米/時,___________.

(2)求甲、乙兩車相遇后之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量的取值范圍.

【答案】(1)753.6;4.5(2) 當(dāng)時,;當(dāng)時,.

【解析】

1)根據(jù)圖像可知兩車2小時候相遇,根據(jù)路程和為270千米即可求出乙車的速度,然后根據(jù)路程、速度、時間的關(guān)系確定、b的值;

2)根據(jù)圖像可知相遇后圖像分為兩段,將相遇后點(diǎn)的坐標(biāo)和分段處以及到達(dá)B地后的坐標(biāo)分別表示出來,然后運(yùn)用待定系數(shù)法解決即可;

解:(1)乙車的速度為:(270-60×2)÷2=75(千米/時);

=270÷75=3.6,b=270÷60=4.5

故答案為:75;3.6;4.5;

(2)60×3.6=216(千米),如圖,可得,,.

設(shè)當(dāng)時的解析式為,

解得

當(dāng)時,,

設(shè)當(dāng)時的解析式為,則

,

解得

當(dāng)時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,分別切、兩點(diǎn),上一點(diǎn),,則

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的盒中裝有若干個只有顏色不同的紅球與白球.

若盒中有個紅球和個白球,從中任意摸出兩個球恰好是一紅一白的概率是多少?請用畫樹狀圖或列表的方式說明;

若先從盒中摸出個球,畫上記號放回盒中,再進(jìn)行摸球?qū)嶒灒驅(qū)嶒灥囊螅好看蚊蚯跋葦嚢杈鶆,摸出一個球,記錄顏色后放回盒中,再繼續(xù),一共做了次,統(tǒng)計結(jié)果如下表:

球的顏色

無記號

有記號

紅色

白色

紅色

白色

摸到的次數(shù)

由上述的摸球?qū)嶒灥慕Y(jié)果可估算盒中紅球、白球各占總球數(shù)的百分之幾?

的條件下估算盒中紅球的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的頂點(diǎn)A(1,1),B(3,1),規(guī)定把△ABC“先沿x軸翻折,再向左平移1個單位為一次變換.如圖這樣的等邊△ABC連續(xù)經(jīng)過2018次變換后,頂點(diǎn)C的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在大課間活動中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)我最喜愛的體育項目進(jìn)行了一次調(diào)查統(tǒng)計,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息,解答以下問題:

(1)該班共有_____名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)在扇形統(tǒng)計圖中,乒乓球部分所對應(yīng)的圓心角度數(shù)為_____;

(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列說法:

①它的圖象與x軸有兩個公共點(diǎn);

②如果當(dāng)x≤1yx的增大而減小,則m=1;

③如果將它的圖象向左平移3個單位后過原點(diǎn),則m=﹣1;

④如果當(dāng)x=4時的函數(shù)值與x=2008時的函數(shù)值相等,則當(dāng)x=2012時的函數(shù)值為﹣3.

其中正確的說法是_____.(把你認(rèn)為正確說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3x軸交于A、B兩點(diǎn),過點(diǎn)A的直線l與拋物線交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(10),C點(diǎn)坐標(biāo)是(4,3).

1)求拋物線的解析式;

2)在(1)中拋物線的對稱軸上是否存在點(diǎn)D,使△BCD的周長最小?若存在,求出點(diǎn)D的坐標(biāo),若不存在,請說明理由;

3)若點(diǎn)E是(1)中拋物線上的一個動點(diǎn),且位于直線AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一塊邊長為的等邊三角形紙板,如圖1,經(jīng)過底邊的中點(diǎn)剪去第一個正三角形;如圖2,過剩余底邊的中點(diǎn)再剪去第二個正三角形,然后依次過剩余底邊的中點(diǎn)再剪去更小的第三個第四···正三角形,則剪掉的第個正三角形的面積是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一塊長16m,寬12m的矩形荒地上,要建造一個花園,要求花園面積是荒地面積的一半,如圖所示分別是小華與小芳的設(shè)計方案.同學(xué)們都認(rèn)為小華的方案是正確的,但對小芳方案是否符合條件有不同意見,你認(rèn)為小芳的方案符合條件嗎?若不符合,請你依照小芳的方案設(shè)計小路的寬度.

查看答案和解析>>

同步練習(xí)冊答案