如圖,已知二次函數(shù)的圖象與軸交于A、B兩點,與軸交于點P,頂點為C(1,-2).

(1)求此函數(shù)的關(guān)系式;

(2)作點C關(guān)于軸的對稱點D,順次連接A、CB、D.若在拋物線上存在點E,使直線PE將四邊形ABCD分成面積相等的兩個四邊形,求點E的坐標;

(3)在(2)的條件下,拋物線上是否存在一點F,使得△PEF是以P為直角頂點的直角三角形?若存在,求出點F的坐標及△PEF的面積;若不存在,請說明理由.

 

【答案】

;E(3,2) ;3

【解析】

試題分析:1)∵的頂點為C(1,-2),

,.                 2

2)設直線PE對應的函數(shù)關(guān)系式為.由題意,四邊形ACBD是菱形.

故直線PE必過菱形ACBD的對稱中心M.            1

P(0,-1),M(1,0),得.從而,          2

E(,),代入,得

解之得,,根據(jù)題意,得點E(3,2)             2

3)假設存在這樣的點F,可設F(,).過點FFG軸,垂足為點G.

在Rt△POM和Rt△FGP中,∵∠OMP+∠OPM=90°,∠FPG+∠OPM=90°,

∴∠OMP=∠FPG,又∠POM=∠PGF,∴△POM∽△FGP.

.又OM=1,OP=1,∴GP=GF,即

解得,,根據(jù)題意,

F(1,-2).

故點F(1,-2)即為所求.       

考點:相似三角形的判定

點評:解答本題的的關(guān)鍵是熟練掌握有兩組角對應相等的兩個三角形相似;兩組邊對應成比例且夾角相等的三角形相似.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)的圖象經(jīng)過點A(3,3)、B(4,0)和原點O.P為二次函數(shù)圖象上精英家教網(wǎng)的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求出二次函數(shù)的解析式;
(2)當點P在直線OA的上方時,求線段PC的最大值;
(3)當m>0時,探索是否存在點P,使得△PCO為等腰三角形,如果存在,求出P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數(shù)的圖象經(jīng)過點A(6,0)、B(-2,0)和點C(0,-8).
(1)求該二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為
6
7
,0)
6
7
,0)

(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
③設S0是②中函數(shù)S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•常德)如圖,已知二次函數(shù)的圖象過點A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)的圖象與x軸交于A(2,0)、B(6,0)兩點,與y軸交于點D(0,4).
(1)求該二次函數(shù)的表達式;
(2)寫出該拋物線的頂點C的坐標;
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)的圖象(0≤x≤3.4),關(guān)于該函數(shù)在所給自變量的取值范圍內(nèi),下列說法正確的是( 。

查看答案和解析>>

同步練習冊答案