【題目】已知函數(shù)f(x)=k﹣ (其中k為常數(shù));
(1)求:函數(shù)的定義域;
(2)證明:函數(shù)在區(qū)間(0,+∞)上為增函數(shù);
(3)若函數(shù)為奇函數(shù),求k的值.

【答案】
(1)解:要使函數(shù)f(x)=k﹣ 有意義,顯然,只需x≠0

∴該函數(shù)的定義域是{x∈R|x≠0}


(2)證明:證法一:在區(qū)間(0,+∞)上任取x1,x2且令0<x1<x2,

則:f(x1)﹣f(x2)=( )( )=

∵0<x1<x2

∴x1x2>0,x1﹣x2<0,

∴f(x1)﹣f(x2)<0,

則函數(shù)f(x)在這個區(qū)間(0,+∞)上是增函數(shù)

證法二:∵f(x)=k﹣

∴f′(x)= ,

當x∈(0,+∞)時,

f′(x)>0恒成立,

所以函數(shù)f(x)在這個區(qū)間(0,+∞)上是增函數(shù)


(3)解:由(1)知,函數(shù)的定義域關于原點對稱.

要使函數(shù)是奇函數(shù),需要使f(﹣x)+f(x)=0

則,得:2k=0,即k=0

∴當k=0時,函數(shù)是奇函數(shù)


【解析】(1)根據(jù)使函數(shù)解析式有意義的原則,可得函數(shù)的定義域;(2)證法一:任取x1 , x2∈R,且0<x1<x2 , 作差判斷出f(x1)﹣f(x2)<0,結(jié)合單調(diào)性的定義,可得:函數(shù)f(x)在R是增函數(shù);
證法二:求導,根據(jù)當x∈(0,+∞)時,f′(x)>0恒成立,可得:函數(shù)f(x)在R是增函數(shù).(3)要使函數(shù)是奇函數(shù),需要使f(﹣x)+f(x)=0,解得k值.
【考點精析】利用函數(shù)單調(diào)性的判斷方法和函數(shù)奇偶性的性質(zhì)對題目進行判斷即可得到答案,需要熟知單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,且f(1)=﹣1.
(1)求f(x)的解析式,并判斷它的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣2x , 若對任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,則實數(shù)t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為研究心理健康與是否是留守兒童的關系,某小學在本校四年級學生中抽取了一個110人的樣本,其中留守兒童有40人,非留守兒童有70人,對他們進行了心理測試,并繪制了如圖的等高條形圖,試問:能否在犯錯誤的概率不超過0.001的前提下認為心理健康與是否是留守兒童有關系?
參考數(shù)據(jù):

P(K2>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2= (n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點M(x,y)滿足 若ax+y的最小值為3,則a的值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角△ABC,AB=AC=3,P,Q分別為邊AB,BC上的點,M,N是平面上兩點,若 + =0,( + =0, =3 ,且直線MN經(jīng)過△ABC的外心,則 =(
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)),記的導函數(shù)為.

(1) 證明:當時, 上的單調(diào)函數(shù);

(2)若處取得極小值,求的取值范圍;

(3)設函數(shù)的定義域為,區(qū)間.若上是單調(diào)函數(shù),則稱上廣義單調(diào).試證明函數(shù)上廣義單調(diào).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種出口產(chǎn)品的關稅稅率t.市場價格x(單位:千元)與市場供應量p(單位:萬件)之間近似滿足關系式:,其中k.b均為常數(shù).當關稅稅率為75%時,若市場價格為5千元,則市場供應量約為1萬件;若市場價格為7千元,則市場供應量約為2萬件.

(1)試確定k.b的值;

(2)市場需求量q(單位:萬件)與市場價格x近似滿足關系式:.P = q時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心(a,b)(a<0,b<0)在直線y=2x+1上的圓,若其圓心到x軸的距離恰好等于圓的半徑,在y軸上截得的弦長為 ,則圓的方程為( )
A.(x+2)2+(y+3)2=9
B.(x+3)2+(y+5)2=25
C.
D.

查看答案和解析>>

同步練習冊答案