考點:方程的解和解方程
專題:簡易方程
分析:(1)首先根據(jù)等式的性質,兩邊同時加上x,然后兩邊再同時減去27.36即可;最后把方程的解代入原方程,如果方程的左邊等于右邊,就說明是原方程的解.
(2)首先化簡,然后根據(jù)等式的性質,兩邊同時減去0.8,最后兩邊再同時除以3.6即可;
(3)首先根據(jù)等式的性質,兩邊同時加上27,然后兩邊再同時除以4即可;
(4)首先根據(jù)等式的性質,兩邊同時除以2,然后兩邊再同時乘以4即可;最后把方程的解代入原方程,如果方程的左邊等于右邊,就說明是原方程的解.
(5)首先化簡,然后根據(jù)等式的性質,兩邊同時除以8.1即可;
(6)首先根據(jù)等式的性質,兩邊同時乘以2,然后兩邊再同時加上3即可.
解答:
解:(1)35.16-x=27.36
35.16-x+x=27.36+x
27.36+x-27.36=35.16-27.36
x=7.8
檢驗:
左邊=35.16-7.8=27.36,
右邊=27.36,
因為左邊=右邊,
所以x=7.8是原方程的解;
(2)20×0.04+3.6x=1.52
0.8+3.6x-0.8=1.52-0.8
3.6x=0.72
3.6x÷3.6=0.72÷3.6
x=0.2
(3)4x-3×9=29
4x-27+27=29+27
4x=56
4x÷4=56÷4
x=14
(4)2(x÷4)=0.8
2(x÷4)÷2=0.8÷2
x÷4=0.4
x÷4×4=0.4×4
x=1.6
檢驗:
左邊=2×(1.6÷4)=0.8,
右邊=0.8,
因為左邊=右邊,
所以x=1.6是原方程的解;
(5)3.6x+4.5x=56.7
8.1x=56.7
8.1x÷8.1=56.7÷8.1
x=7
(6)(x-3)÷2=7.5
(x-3)÷2×2=7.5×2
x-3=15
x-3+3=15+3
x=18
點評:此題主要考查了根據(jù)等式的性質解方程的能力,即等式兩邊同時加上或同時減去、同時乘以或同時除以一個數(shù)(0除外),兩邊仍相等.