下面給出的4個命題:
①已知命題p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,則?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0
;
②函數(shù)f(x)=2-x-sinx在[0,2π]上恰好有2個零點;
③對于定義在區(qū)間[a,b]上的連續(xù)不斷的函數(shù)y=f(x),存在c∈(a,b),使f(c)=0的必要不充分條件是f(a)f(b)<0;
④對于定義在R上的函數(shù)f(x),若實數(shù)x0滿足f(x0)=x0,則稱x0是f(x)的不動點.若f(x)=x2+ax+1不存在不動點,則a的取值范圍是(-1,3).
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面給出的4個命題:
①已知命題p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,則?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0
;
②函數(shù)f(x)=2-x-sinx在[0,2π]上恰好有2個零點;
③對于定義在區(qū)間[a,b]上的連續(xù)不斷的函數(shù)y=f(x),存在c∈(a,b),使f(c)=0的必要不充分條件是f(a)f(b)<0;
④對于定義在R上的函數(shù)f(x),若實數(shù)x0滿足f(x0)=x0,則稱x0是f(x)的不動點.若f(x)=x2+ax+1不存在不動點,則a的取值范圍是(-1,3).
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下面給出的4個命題:
①已知命題p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,則?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0
;
②函數(shù)f(x)=2-x-sinx在[0,2π]上恰好有2個零點;
③對于定義在區(qū)間[a,b]上的連續(xù)不斷的函數(shù)y=f(x),存在c∈(a,b),使f(c)=0的必要不充分條件是f(a)f(b)<0;
④對于定義在R上的函數(shù)f(x),若實數(shù)x0滿足f(x0)=x0,則稱x0是f(x)的不動點.若f(x)=x2+ax+1不存在不動點,則a的取值范圍是(-1,3).
其中正確命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年吉林省通化一中高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

下面給出的4個命題:
①已知命題p:?x1,x2∈R,,則¬p:?x1,x2∈R,;
②函數(shù)f(x)=2-x-sinx在[0,2π]上恰好有2個零點;
③對于定義在區(qū)間[a,b]上的連續(xù)不斷的函數(shù)y=f(x),存在c∈(a,b),使f(c)=0的必要不充分條件是f(a)f(b)<0;
④對于定義在R上的函數(shù)f(x),若實數(shù)x滿足f(x)=x,則稱x是f(x)的不動點.若f(x)=x2+ax+1不存在不動點,則a的取值范圍是(-1,3).
其中正確命題的個數(shù)是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下五個命題:①任意n∈N*,(n2-5n+5)2=1.
②已知x,y滿足條件
x≥0
y≤x
2x+y+k≤0
(k為常數(shù)),若z=x+3y的最大值為8,則k=-6.
③設(shè)全集U={1,2,3,4,5,6},集合A={3,4},B={3,6},則CU(A∪B)={1,2,3,5,6}.
④定義在R上的函數(shù)y=f(x)在區(qū)間(1,2)上存在唯一零點的充要條件是f(1)•f(2)<0.
⑤已知△ABC所在平面內(nèi)一點P(P與A,B,C都不重合)滿足
PA
+
PB
+
PC
=
BC
,則△ACP與△BCP的面積之比為2.
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下幾個命題:
①由曲線y=x2與直線y=2x圍成的封閉區(qū)域的面積為
4
3

②已知點A是定圓C上的一個定點,線段AB為圓的動弦,若
OP
=
1
2
(
OA
+
OB
)
,O為坐標(biāo)原點,則動點P的軌跡為圓;
③把5本不同的書分給4個人,每人至少1本,則不同的分法種數(shù)為A54•A41=480種;
④若直線l∥平面α,直線l⊥直線m,直線l?平面β,則β⊥α.
其中,正確的命題有
 
.(將所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6、給出如下四個命題:
①對于任意一條直線a,平面α內(nèi)必有無數(shù)條直線與a垂直;
②若α、β是兩個不重合的平面,l、m是兩條不重合的直線,則α∥β的一個充分而不必要條件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四條不重合的直線,如果a⊥c,a⊥d,b⊥c,b⊥d,則“a∥b”與“c∥d”不可能都不成立;
④已知命題P:若四點不共面,那么這四點中任何三點都不共線.
則命題P的逆否命題是假命題上命題中,正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三個互不重合的平面α,β,γ,且α∩β=a,α∩γ=b,β∩γ=c,給出下列命題:
①若a⊥b,a⊥c,則b⊥c;②若a∩b=P則a∩c=P;③若a⊥b,a⊥c,則α⊥γ;④若a∥b則a∥c.
其中正確命題個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A(0,1),B(2,4)C(6,1),P為平面上任意一點,M、N分別使
PM
=
1
2
(
PA
+
PB
)
,
PN
=
1
3
(
PA
+
PB
+
PC
)
,給出下列相關(guān)命題:①
MN
BC
;②直線MN的方程為3x+10y-28=0;③直線MN必過△ABC的外心;④向量λ(
AB
+
AC
)(λ≠0)
所在射線必過N點,上述四個命題中正確的是
.(將正確的選項全填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不同直線m、n及不重合平面P、Q,給出下列結(jié)論:

(1)mP,nQ,m⊥nP⊥Q                 (2)mP,nQ,m∥nP∥Q

(3)mP,nP,m∥nP∥Q                 (4)m⊥P,n⊥Q,m⊥nP⊥Q

其中的假命題有(    )

A.1個         B.2個             C.3個                D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

給出下列命題:(1)、是銳角的兩個內(nèi)角,則;(2)在銳角中,的取值范圍為 ( );(3)已知為互相垂直的單位向量,的夾角為銳角,則實數(shù)的取值范圍是;(4)已知O是所在平面內(nèi)定點,若P是的內(nèi)心,則有;(5)直線x= -是函數(shù)y=sin(2x-)圖象的一條對稱軸。其中正確命題是(     )

A 。(1)(3)(5)         B。 (2)(4)(5)        C。 (2)(3)(4)      D。(1) (4) (5)

 

查看答案和解析>>


同步練習(xí)冊答案